

Tallinn 2020

Malware Reverse Engineering Handbook

Ahmet BALCI

Dan UNGUREANU

Jaromír VONDRUŠKA

NATO CCDCOE

2

CCDCOE

The NATO Cooperative Cyber Defence Centre of Excellence (CCDCOE) is a NATO-accredited cyber defence hub

focusing on research, training and exercises. It represents a community of 25 nations and providesing a 360-

degree view of cyber defence, with expertise in the areas of technology, strategy, operations and law. The heart

of the Centre is a diverse group of international experts from military, government, academia and industry

backgrounds.

The CCDCOE is home to the Tallinn Manual 2.0, the most comprehensive guide on how International Law applies

to cyber operations. The Centre organises the world’s largest and most complex international live-fire cyber

defence exercise, Locked Shields, and hosts the International Conference on Cyber Conflict, CyCon, a unique

annual event in Tallinn, bringing together key experts and decision-makers in the global cyber defence

community. As the Department Head for Cyberspace Operations Training and Education, the CCDCOE is

responsible for identifying and coordinating education and training solutions in the field of cyber defence

operations for all NATO bodies across the Alliance.

The Centre is staffed and financed by its member nations – currently Austria, Belgium, Bulgaria, the Czech

Republic, Denmark, Estonia, Finland, France, Germany, Greece, Hungary, Italy, Latvia, Lithuania, the Netherlands,

Norway, Poland, Portugal, Romania, Slovakia, Spain, Sweden, Turkey, the United Kingdom and the United States.

NATO-accredited centres of excellence are not part of the NATO Command Structure.

www.ccdcoe.org

publications@ccdcoe.org

Disclaimer

This publication is a product of the NATO Cooperative Cyber Defence Centre of Excellence (the Centre). It does

not necessarily reflect the policy or the opinions of the Centre or NATO. The Centre may not be held responsible

for any loss or harm arising from the use of information contained in this publication and is not responsible for

the content of external sources, including external websites referenced in this publication.

Digital or hard copies of this publication may be produced for internal use within NATO, and for personal or

educational use when for non-profit and non-commercial purposes, provided that copies bear a full citation.

http://www.ccdcoe.org/
mailto:publications@ccdcoe.org

3

Table of Contents

Abstract ... 5

1. Why perform malware analysis? ... 6

2. How to set up a lab environment .. 7

3. Static malware analysis ... 10

3.1 Description .. 10

3.2 Static analysis techniques & tools ... 10

 VirusTotal .. 10

 String analysis ... 11

 PEiD Tool ... 11

 CFF Explorer .. 12

 Resource Hacker ... 14

 PeStudio .. 14

4. Disassembly (IDA & Ghidra) ... 18

4.1 IDA free .. 18

4.2 Ghidra .. 21

5. Dynamic analysis ... 24

5.1 Description .. 24

5.2 Behaviour analysis tools .. 24

 Process Monitor .. 24

 Process Explorer.. 27

 Regshot ... 29

 INetSim ... 30

5.3 Sandboxing .. 31

 Cuckoo Sandbox .. 31

 Windows Sandbox .. 33

5.4 Debuggers .. 34

 Breakpoint .. 34

 Symbols and Intermodular calls .. 36

 Deobfuscation ... 37

 Patching .. 40

4

6. Network traffic analysis ... 43

7. Packed executables/unpacking ... 48

 Detection .. 48

 Unpacking ... 50

8. Incident response collaboration (Misp & Yara) ... 52

9. Conclusion ... 54

10. References ... 55

5

Abstract

Malware is a growing threat which causes considerable cost to individuals, companies and institutions.
Since basic signature-based antivirus defences are not very useful against recently emerged malware threats or
APT attacks, it is essential for an investigator to have the fundamental skillset in order to analyse and mitigate
these threats. While specific measures need to be taken for particular cases, this handbook gives an overview of
how to analyse malware samples in a closed environment by reverse engineering using static or dynamic
malware analysis techniques. The information in this handbook focuses on reverse-engineering fundamentals
from the malware perspective, without irrelevant details. Some simple steps and definitions are, therefore,
omitted to retain the focus. Resources mentioned in this handbook can be accessed with a simple internet
search.

There is no novel work presented in this handbook, as it can be considered as the first steps in investigating
malware. The reader will become familiar with the most common open-source toolkits used by investigators
around the world when analysing malware. Notes and best practice are also included. By applying the techniques
and tools presented here, an analyst can build Yara rules that can help during the investigation to identify other
threats or victims.

6

1. Why perform malware analysis?

Malware analysis is ‘the study or process of determining the functionality, origin and potential impact of a
given malware sample’ [Wikipedia]1

Malware analysis responds to an incident by gathering information on exactly what happened to which files
and machines. The analyst needs to understand what a particular malware binary can do and how to detect it
on the systems and network, assess the damage caused, identify the files it tried to exfiltrate, its modus operandi,
and much more.

Determining the type of malware being analysed makes it easier to discover what the malware is doing
according to the common effects of each kind of malware. Most malware can be classified with these categories:

A backdoor is a method or code on the target computer that allows attacker access without legitimate
authentication.

A botnet is a group of computers, infected in a similar way to backdoors, receiving instructions from a single C2
server.

Ransomware is a type of malware that encrypts the data on a system, disabling the access of the user. Attackers
ask for a ransom for the decryption key without guarantee of delivering the correct key.

Downloader/Launcher is a software that downloads or launches other malicious code.

Information stealing malware/Spyware collects information without the user's knowledge by logging
keystrokes, screenshotting, etc.

Rootkits are programs that conceal the existence of malicious files, applications, network connections, etc.

Scareware is a type of malware that convinces the user to buy fake security software which, in fact, only removes
the scareware.

Worms and Viruses are malicious codes that copy themselves through programs and networks, infecting more
computers.

Fileless malware is a malicious memory-based technique that uses existing files to download executable files on
the system. This technique does not directly use files or the file system. Instead, it uses memory or some other
OS object (APIs, crontabs, registry keys).

Hybrid malware is a combination of different malware actions, such as propagation and activity together, for
example, trojans and ransomware.

Advanced Persistent Threats (APT) are typically a nation-state or state-sponsored group attacking a specific
target with advanced methods specially designed for that particular target.

This list can be expanded with more specific malware types, but this handbook focuses on general
techniques and the most common malware types for Windows OS.

1 The definition according to Wikipedia: https://en.wikipedia.org/wiki/Malware_analysis

https://en.wikipedia.org/wiki/Malware_analysis

7

2. How to set up a lab environment

Setting up a safe environment will allow the mitigation of obvious risks on the systems through malware
analysis. Virtual machines and virtual networks make this setup more comfortable, faster and more secure.

There are many virtualisation platforms on the market, such as VirtualBox, Parallels, Microsoft Virtual
PC, VMware, Microsoft Hyper-V and Xen. We will illustrate a few examples using Oracle VM VirtualBox, a free
and open-source hosted hypervisor developed by Oracle Corporation, which can be downloaded from this link

at the time of writing: https://www.virtualbox.org/wiki/Downloads .

Network adjustments for any simulated environment can be carried out conveniently in VirtualBox, with
seven different types of network connectivity:

Not Attached – In this mode, a virtual adapter is installed in a VM, but the network connection is not present,
just as if the ethernet cable were unplugged.

NAT – This mode allows the guest machine to connect to the internet but not to other guests.

NAT Network – Very similar to NAT mode, NAT network provides communication for guests inside the same NAT
network.

Bridged – Bridged mode is used for connecting the virtual adapter of a VM to the physical network host machine
it is connected to.

Internal – This mode allows guest machines to connect to each other in an air-gapped network. They cannot
access the host machine from this isolated network.

Host-only - This mode enables a NAT network between host and guest machines.

Generic Driver - This network mode allows you to share the generic network interface. Two sub-modes are
available for VirtualBox Generic Driver mode. You can either create a UDP tunnel to connect your virtual
machines to each other or connect your virtual machine to a VDE (Virtual Distributed Ethernet) switch network
running under Linux or FreeBSD.

FIGURE 1: EXAMPLE MALWARE LAB SETUP

https://www.virtualbox.org/wiki/Downloads

8

A basic example of the malware lab environment is shown in Figure 1. In this setup, a Windows victim
guest machine is installed to run the malware, and a Remnux guest machine is used to simulate the internet
(using Inetsim described in section 5.2.4) and analyse the malware behaviour. Since we will be using a simulated
Internet, the malware must be isolated from the real Internet. The host-only network mode allows us to achieve
this goal while establishing a network connection between the host and two guest machines. It is imperative that
the victim machine cannot access the host machine or the other machines on the physical network. This
requirement will be met using the default gateways and separate network setting on the host machine. The Host-
only option creates a virtual network interface similar to the loopback interface on the host machine. The IP of
this interface has to be configured statically and differently from the physical network. In addition, the IPs of the
guest machines have to be statically configured while the default gateway of the victim machine is pointing to
the Remnux machine, and the default gateway of the Remnux machine is pointing to the host machine. The DNS
IP on the victim machine should be set up to the Remnux VM, allowing the DNS queries to end up at the Inetsim
running on Remnux.

Snapshotting

A snapshot is an image of the disk and memory at a precise moment. By analysing a memory dump using
forensics tools, you can gain a better overview of the sample you are examining. By using tools like Volatility or
Rekall, it is possible to extract the malware sample, see connections, etc.

NB: At the time of writing, Volatility and Rekall could be downloaded from the following links:
https://www.volatilityfoundation.org/26, https://github.com/google/rekall

Snapshotting is a crucial feature for faster and easier malware analysis. The virtual environment set for
the malware can be easily restored after the malware is run or a system parameter changed. Essential functions
include:

• Restore snapshot: discard changes and use a pre-snapshot machine image.

• Delete snapshot: merge recorded snapshot with the current state. You cannot return to the pre-
snapshot image after deletion.

• Clone snapshot: ‘fork’ the selected snapshot to a new virtual machine.

Malware self-protection:

Despite the convenience provided by virtual environments, more recent malware tries to detect if it is
being analysed in a virtual environment and hides its behaviour. The most common parameters checked by
malware are registry keys, memory structures, communication channels, specific files and services, MAC
addresses and some hardware features.

Some examples of these parameters for VirtualBox are:

• Registry keys:

• Computer\HKEY_LOCAL_MACHINE\SOFTWARE\Oracle\VirtualBox Guest Additions

• Computer\HKEY_LOCAL_MACHINE\HARDWARE\ACPI\DSDT\VBOX__

• Processes:

• VboxService.exe

• VboxTray.exe

• Files:

• C:\Windows\System32\drivers\VBoxMouse.sys

• C:\Windows\System32\drivers\VBoxVideo.sys

• MAC addresses starting with 08:00:27

https://www.volatilityfoundation.org/26
https://github.com/google/rekall

9

• CPUID instruction check:

• Running this instruction with EAX=0x40000000 will return the CPU manufacturer ID string in
EBX, EDX and ECX, respectively, such as ‘GenuineIntel’ or ‘AuthenticAMD’. But for VirtualBox,
it will return ‘vboxvboxvbox’.

• Also, running with EAX=1 will change the 31st bit of ECX to 1 on a virtual machine.

One of the best-known real-world malware examples for checking CPU names is ‘GootKit,’ which also
checks registry, disk, BIOS and MAC address. Other examples include ‘Locky’, ‘Heodo’ or ‘Kovter’, which expect
user interactions, and ‘QakBot Trojan’ which waits for some time before executing.

To remedy these situations, some of these values (MAC addresses, register values, configuration files,
etc.) can be changed manually; the API calls from the malware can be intercepted; and custom outputs can be
provided to the malware to counter malware self-protection mechanisms.

10

3. Static malware analysis

3.1 Description

Static malware analysis refers to analysis of the Portable Executable files (PE files) without running them.
This analysis is initially conducted by analysing the PE header structure, which contains valuable information that
helps the operating system to load and execute the file (such as supported systems, memory layout, dynamic
library references for linking, API export and import tables, resource management data and thread-local storage
data).

Basic static analysis can confirm whether a file is malicious by providing information about its
functionality, certificates, imports, compilation date, etc. Based on this information, the analyst can create an
IoC,2 and use it for further investigations. This analysis is ineffective against sophisticated samples, in comparison
with advanced static analysis, which involves the analysis of the malicious code inside a disassembler and going
over the instructions.

In the next section, the different tools and techniques used for performing static malware analysis are
presented.

3.2 Static analysis techniques & tools

 VirusTotal

By uploading a file to VirusTotal, and cross-referencing it with a list of detections from various antivirus
programs, the analyst will discover whether the sample is malicious or not. This process also provides information
regarding the file, such as SHA256, MD5, file size, signature info, section details, imports, etc.

FIGURE 2: VIRUSTOTAL – WEB INTERFACE

2 Indicator of compromise (IoC) is an artefact used in computer forensics that identifies potentially malicious activity on a

system or network

11

If it is not possible to upload the sample to VirusTotal, the platform also provides the option to query
for an existing sample that was already uploaded on the website by searching after the hash value of your sample.

NB: This tool should be used carefully: uploading a malware sample containing sensitive information about your company to VirusTotal could
trigger a security problem for the company. If data are leaked, third parties could find and exploit them by using the search function available
on the website.

 String analysis

String analysis is the process of extracting readable Ascii and Unicode characters from the binary. Not
all the strings found are used by the program; attackers may also include fake strings to disrupt the investigation.

Tools used for string analysis:

• Strings2 – command-line utility, Windows 32bit/64bit executable, is used for extracting strings from
binary data. This application is an improved version of the classic Sysinternals strings approach and can
also dump strings from process address spaces. At the time of writing, Strings2 could be downloaded
from the following link: https://github.com/glmcdona/strings2

• Flare-Floss (obfuscated string solver) - combines and automates different techniques in order to
perform string decoding. At the time of writing, the Floss tool could be downloaded from the following
link: https://github.com/fireeye/flare-floss

NB: Strings are in ASCII and Unicode format (for some tools the type of string to be extracted during analysis must be specified,
as some tools do not extract both formats)

 PEiD Tool

PEiD is a tool used for analysing the PE header to give the analyst more details about the cryptors,3
packers,4 and compilers found in the executable files. PEiD makes this identification by using static signatures
stored within the application. The example presented below illustrates the result of an analysis using the PEiD
tool. In this case, the analysed sample is not packed, and the entropy value is low. The PEiD tool can detect over
500 signature definitions that are loaded from a config file called ‘userdb’.

FIGURE 3: PEID SAMPLE SCAN

3 Crypter is a type of software that can obfuscate, encrypt and manipulate malware, in order to avoid detection by security

programs.
4 Packers reduce the physical size of an executable by compressing it.

https://github.com/glmcdona/strings2
https://github.com/fireeye/flare-floss

12

➢ At the time of writing, this tool could be downloaded from the following link:
https://www.softpedia.com/get/Programming/Packers-Crypters-Protectors/PEiD-updated.shtml

 CFF Explorer

CFF Explorer is a tool commonly used to make modifications inside the PE. It runs on Windows OS and
has the capability of listing processes or dumping the process to a file.

By using this tool, the analyst can extract the compilation date and architecture type from the analysed
malware sample, based on the information inside the PE Header. The compilation data is presented using Epoch
Unix Time in the ‘TimeDateStamp’ rubric. In this case, the date is ‘GMT Sunday, July 13, 2008, 6:47:12 PM’.

FIGURE 4: CFF EXPLORER – COMPILATION DATE CHECK

NB: The information regarding the compilation date of the sample extracted from the PE Header can
help the analyst answer questions related to incident handling.

https://www.softpedia.com/get/Programming/Packers-Crypters-Protectors/PEiD-updated.shtml

13

By analysing the section header rubric, the analyst can identify whether the malware is packed or not.
Packers tend to change section names from the regular names (.text, .data, .rsrc, etc.) to other names, such as
UPX1, for example. In the example presented below, the sample is not packed.

FIGURE 5: CFF EXPLORER – SECTION HEADERS

The CFF Explorer features list includes: Process viewer, Hex Editor, Drivers viewer, PE and Memory
Dumper, PE integrity checks, among others.

NB: At the time of writing, CFF Explorer could be downloaded from the following link:
https://ntcore.com/?page_id=388

https://ntcore.com/?page_id=388

14

 Resource Hacker

Resource Hacker is a free application that can be used for extracting, modifying or adding resources
(images, dialogs, menus, etc.) from Windows binaries.

 FIGURE 6: RESOURCE HACKER – BINARY RESOURCES (ICON, MANIFEST)

Using Resource Hacker can help in analysing dropper samples that have an additional PE file inside their
resources. The tool can also be accessed from the command line without having to open the Resource Hacker
GUI.

NB: At the time of writing, Resource Hacker could be downloaded from the following link:
http://www.angusj.com/resourcehacker/

 PeStudio

PeStudio is a tool used to find suspicious artefacts within executable files to accelerate the initial
malware assessment. By using this tool, the analyst can easily spot the functionalities that are commonly used
for malicious activities by the malware creators.

When the analyst opens the malicious sample inside the program, general information regarding the
file, such as MD5 hash and entropy, is obtained. The hash value of the sample will then be checked on VirusTotal,
and the result of the lookup will be listed inside the program. The picture presented below shows the result of
the query:

http://www.angusj.com/resourcehacker/

15

FIGURE 7: PESTUDIO – VIRUSTOTAL CHECK

In the ‘Section tab’, the analyst can see the MD5 hash for each section, entropy value and entry-point
address (the address from where the process starts executing), and also the read, write, and/or execute
permission for each section. If the ‘.rsrc’ section is abnormally large, the application can ‘drop’ another file on
the disk. In this case, it is recommended that, during runtime analysis, the analyst pays close attention to the
files that are written on the disk.

FIGURE 8: PESTUDIO –HEADERS SECTIONS

‘Import sections’ contain the imported function names. By searching each function on
MSDN.microsoft.com, the analyst can identify what that function is doing. PeStudio has a list of ‘blacklisted’
imports, where all the imports that can be used for malicious activities are listed.

In the sample presented below, an inspection of the ‘Imports’ section can give the analyst an

overview of the principal imported libraries used by the malware for malicious activities and blacklisted by the
PeStudio application. For example, the imports ‘connect’, ‘gethostbyname’, ‘socket’, ‘memcpy’, ‘send’ and
‘GetAsyncKeyState’ give the malware analyst some idea of the basic functionalities of the analysed sample.

The ‘Exports section’ presents the functions that the PE file is exporting for other PE files to use. In the
example presented, there are no exports.

16

FIGURE 9: PESTUDIO – IMPORTS SECTION

The ‘resources section’ usually stores the UI information (icons or custom window elements). If the
malicious application has dropper5 functionalities, the files that are written on the disk could be stored in the
‘.rsrc’ section.

The section ‘tls-callback’ contains the code that will set up the environment so the application can run.
This code will be executed before the entry-point. Using this functionality, the malware creator can hide code
inside the TLS (Thread Local Storage) that will be executed before Windows OS creates the process.

The ‘strings section’ is also a useful source of information for the analyst. All the strings from the
executable are parsed and placed in this section. In examining the ‘strings section’, the analyst is trying to identify
readable strings, such as IPs and URLs, and filenames that can be used during the investigation. When the number
of readable characters is reduced, the application could be packed or obfuscated. The ‘strings section’ of the
sample analysed is presented below:

5 Dropper is a generic name for trojans that drop additional artefacts on the affected system.

17

 FIGURE 10: PESTUDIO – STRINGS SECTION

Another important area when analysing malware is the ‘certificate section’, which contains the
certificate used for signing the application. Usually, malicious applications are not signed or use a certificate from
a certificate authority that is untrusted or has been compromised.

The PeStudio tools can also create and export an XML report for the executable being analysed. The
XML output report can be used for further analysis by third-party analysis tools.

NB: At the time of writing, PeStudio could be downloaded from the following link: https://www.winitor.com

https://www.winitor.com/

18

4. Disassembly (IDA & Ghidra)

A disassembler is a very helpful tool for exploring a compiled executable file and giving a general

understanding of what it does. Executable files contain a machine code in the form of binary data. Disassemblers

translate machine code into more convenient assembly language.

4.1 IDA free

An IDA6 disassembler is a ‘standard’ tool used by malware researchers and reverse engineers. This

handbook focuses only on the IDA freeware version (not for commercial use).

Using IDA for malware analysis simply as a disassembler (opening files, disassembly and reading code)

does not infect the workstation. Regarding IDA’s debugging capabilities, it is highly recommended for the analyst

to work in a separate LAB dedicated to malicious file processing to prevent unwanted infection of the business

working environment, which may occur by accidentally running malicious code in IDA debugger. See Chapter 2

(How to set up a LAB environment) for more details.

IDA can display the assembly code in essential text view (address, instruction, parameters and

comments; row by row) or in graph view, which draws the assembly code in logic blocks. The division into blocks

is based on jumps, conditions and loops. Relationships between blocks are illustrated by arrows. The graph view

is available only for valid functions. The type of view can be changed by pressing the space bar.

FIGURE 11: IDA TEXT VIEW (ON THE LEFT) & GRAPH VIEW (ON THE RIGHT)

Recommended first steps after opening an executable in IDA are to familiarise yourself with the basic

properties of the executable – strings, functions, imports, exports and names. All are accessible in the menu

‘View’ > ‘Open subviews’ > ‘Strings’ (Functions, Imports, Exports and Names are in the same location) if not

6 https://www.hex-rays.com/products/ida/

19

already opened as a tab in the main working window.

FIGURE 12: IDA DISASSEMBLER

Strings – a list of string (text) representations occurring in an executable which can help in gaining a better

understanding of the purpose of an executable, e.g. IP address, URL or domain name point to network activity.

Imports – a list of API functions loaded from external libraries (most often part of the operating system) and

used by an executable. An API function is a predefined code that an executable can call without having it

implemented in its code. From the list of imported functions, it is possible to identify how an executable interacts

with the operating system and its resources (Filesystem, registry, networking, encryption, etc.).

Exports – a list of functions that are offered from an executable to the external environment. Exported functions

can be called and executed by an external program.

Names – a list of all entity names (library function, regular function, instruction, string literal, data, imported

name).

Functions – a list of all functions incorporated in the code of an executable. In addition, the F.L.I.R.T. (Fast Library

Identification and Recognition Technology) feature allows the IDA to recognise standard library functions

generated by supported compilers and greatly improves the usability and readability of generated

disassemblies.7

It is generally advisable to focus on networking, encryption and filesystem when analysing strings and

imports. If interesting items are found in above-mentioned lists, they should be investigated thoroughly. For

example, in an investigation of imported function ‘InternetConnectA’:

7 https://www.hex-rays.com/products/ida/tech/flirt/

20

1. Double-click on it (or single-click and press ENTER) to lead the assembly view to the address (address)

where the function declaration is stored.

2. Highlight the function name (single-click on it) and press ‘x’ (or right-click > ‘Jump to xref to operand…’),

to show a table with a list of items where the function is referenced.

3. Double-clicking on items switches the view to the code with interest ‘InternetConnectA’ function and

enables the context to be analysed.

FIGURE 13: WORKING WITH IDA (A – IMPORTS, B – HOW TO GET CROSS-REFERENCES, C- A LIST OF CROSS-REFERENCES,
D – CODE AREA WITH INTEREST API FUNCTION)

The ‘InternetConnectA’ function is activated by the ‘CALL’ instruction. According to the official

documentation provided by Microsoft, 8 the ‘InternetConnectA’ function has 8 parameters. The particular

parameters are assigned to the function through ‘PUSH’ instructions. IDA is able to recognise parameters of

known functions and mark them by a comment which helps analysts to orientate better within the code and

understand it. As seen above (Figure 2-D), parameters are passed by the ‘PUSH’ instruction in reverse order to

the stack – ‘dwContext’ (the 8th parameter of the function) is PUSHed as the first one. Conversely, ‘hInternet’

(the 1st parameter of the function) is PUSHed as the last one.

How to understand the code? Parameter ‘dwService’ determines the type of service: value 3 = HTTP;

value 50h in ‘nServerPort’ means the standard TCP port 80 is used (50 hexadecimal = 80 decimal) and

8 https://docs.microsoft.com/en-us/windows/win32/api/wininet/nf-wininet-internetopena

21

‘szServerName’ contains ‘C2.malware.info’ which is the hardcoded domain name of the destination server.

As such code analysis is a very slow, time-consuming process, it is advisable not to analyse the entire

code, instruction by instruction, from the beginning. A better approach is to identify interesting blocks of code

(based on strings, imports and functions) and analyse these thoroughly.

The functionality of IDA can easily be extended by the use of programmable plug-ins. Plugins may be

written to automate routine tasks, for example to enhance the analysis of hostile code, or to add specific

functionality to our disassembler. Plugins should be written in C++. They may be linked to hotkeys or menu items

and have full access to the IDA database and may examine or modify the program or use I/O functions.9 Some

plugins are available only for registered users with an active subscription for the commercial version; others are

available as a paid extension (e.g. the Hex-Rays decompiler) and there are also open-source plugins. One of the

most widely used plugins is IDAPython, which enables the writing of custom scripts for IDA in Python.

4.2 Ghidra

Ghidra10 is a disassembler developed by NSA and released as an open-source tool in 2019.

FIGURE 14: GHIDRA WINDOW (A – MENU; B – PROGRAM STRUCTURE; C – IMPORTS, EXPORTS, FUNCTIONS;

D – ASSEMBLY; E – DECOMPILER)

9 https://www.hex-rays.com/products/ida/tech/plugin/
10 https://ghidra-sre.org/

22

In comparison with IDA in terms of usage, Ghidra initially seems less user-friendly, perhaps because of

its appearance. It must be taken into account that IDA is a professional tool with commercial development and

significant history in the field of reverse-engineering, while Ghidra is a new tool published only recently.

Ghidra has similar functionalities to IDA free, as described in the previous chapter. This chapter shows

its additional properties. For the malware analyst, the ability to show a graphical interpretation of code structure

similar to a block diagram (code blocks, branches, conditions, etc.) enables better understanding of an algorithm.

To access this function, click on the ‘Display Function Graph’ icon located in the main panel or go to the menu

‘Window’ > 'Function Graph’.

FIGURE 15: GHIDRA - FUNCTION GRAPH

Ghidra surpasses the IDA free version with its capable decompiler. While IDA also offers a decompiler

functionality, this is only included in its commercial version and as an extension subject to additional payment.

Decompilers translate assembly code into a high-level programming language, which reduces the

analysis time considerably. High-level language is more familiar than assembly code so requires less time to read;

the code is well structured, and the logic of the algorithm is more obvious.

Ghidra decompiles assembly code into C language natively. There are both disassembled and

decompiled code interpretations in the default Ghidra window. They are synchronised: when scrolling either

through the assembly code or the C code, the cursor highlights identical parts of code in green simultaneously in

both windows, as illustrated in Figures 16 and 17 on the next page.

23

FIGURE 16: GHIDRA - ASSEMBLY CODE

FIGURE 17: GHIDRA - DECOMPILED C CODE

24

5. Dynamic analysis

5.1 Description

Unlike static malware analysis, dynamic malware analysis is conducted by analysing the code while it is
running. To study the behaviour of the executable, running it inside a virtual lab environment is recommended.
To understand the functionality of the malware and prevent it from spreading, reverse engineers use debuggers
when performing advanced dynamic malware analysis.

5.2 Behaviour analysis tools

 Process Monitor

Process Monitor is used to monitor the creation or termination of a process or give the analyst more

information about a specific process. The tool combines the features of two Sysinternals utilities (Regmon and

Filemon) and adds filtering capabilities. These features make Process Monitor an essential tool that every analyst

should include in his malware hunting toolkit.

The process monitor has the capability of monitoring, capturing and filtering multiple artefacts, as

detailed below, from the Microsoft website:11

• More data captured for operation input and output parameters;

• Non-destructive filters allow you to set filters without losing data;

• Reliable capture of process details, including image path, command line, user and session ID;

• Filters can be set for any data field, including fields not configured as columns;

• Process tree tool shows the relationship of all processes referenced in a trace;

• Native log format preserves all data for loading in a different Process Monitor operation;

• Boot time logging of all operations.

NB: to obtain all the events from processes and registry, the analyst has to run the Process Monitor tool

with administrator rights.

In the picture presented below, using the Process monitor filter capability and applying a filter that

contains the name of the sample we want to analyse (malware.exe in this case), the analyst can see and make

correlations based on the events caused by the sample, after the execution.

11 https://docs.microsoft.com/en-us/sysinternals/downloads/procmon

https://docs.microsoft.com/en-us/sysinternals/downloads/procmon

25

 FIGURE 18: PROCESS MONITOR – FILTER AFTER PROCESS NAME

In the example presented, after examining the events, the analyst will have a better picture of what the

malware is trying to do. For example, in the picture presented below, the executable ‘malware.exe’ is reading

registry keys, creating files and initiating network connections.

Checking all the actions of the malware on a system can give the analyst some idea of the purpose and

the intentions of the malicious executable. This type of analysis should be conducted before proceeding to a

deeper analysis of the code using Static Malware analysis techniques in the IDA disassembler.

 FIGURE 19: PROCESS MONITOR – FILTER AFTER ‘MALWARE.EXE’ PROCESS

Since having the right filters is very important when you have multiple events and want to follow just

the important ones, the Microsoft webpage 12 has a link to the file ‘Malware Analysis.PMF’ which has multiple

filters already pre-configured.

12 https://docs.microsoft.com/en-us/archive/blogs/motiba/process-monitor-for-dynamic-malware-analysis

https://docs.microsoft.com/en-us/archive/blogs/motiba/process-monitor-for-dynamic-malware-analysis

26

Included Filters:

· TCP/UDP Send and Receive - any connections that the malware may try to use while it is running;
· Load Image – DLL/Executable loading;
· Create File – new files being created;
· Write/Delete/Rename File – any changes to files;
· Registry activities – Run entries used for malware persistence.

Excluded Filters that are not usually relevant for malware analyses:

· Procmon/Procmon64/Autoruns/Sysmon: These will exclude any events related to the Sysinternals tools;
· Disposition: Open – used to filter any call for creating file used to open a file rather than creating a file;
· Page File – the page file is less/not relevant when conducting malware analysis.

The user can load the filter into the Process Monitor by using the Filter->Organize Filters menu and

then import.

 FIGURE 20: PROCESS MONITOR – CONFIG MALWARE ANALYSIS FILTER

Process Monitor is part of the SysInternals Suite package and, at the time of writing, can be downloaded

from the following website: https://docs.microsoft.com/en-us/sysinternals/downloads/procmon

https://docs.microsoft.com/en-us/sysinternals/downloads/procmon

27

 Process Explorer

Process Explorer is a powerful process management utility used to provide insight into all running

processes. The processes that are running on the system are shown in a tree structure that displays child and

parent relationships.

The Process Explorer graphic interface and colour code are shown below:

 FIGURE 21: PROCESS EXPLORER – COLOUR SELECTION FILTER

The initial display gives the user a set of columns that include:13

• Process – the file name of the executable along with the icon if one exists;

• CPU – the percentage of CPU time in the last second (or whatever the update speed is set to);

• Private Bytes – the amount of memory allocated to this program alone;

• Working Set – the amount of actual RAM allocated to this program by Windows;

• PID – the process identifier;

• Description – the description, if the application has one;

• Company Name – this one is more useful than you think. If something is not quite right, start by looking
for processes that are not produced by Microsoft.

13 https://www.howtogeek.com/school/sysinternals-pro/lesson2/

28

Process Explorer Features:

• The default tree view shows the hierarchical parent relationship between processes, and displays these
using colours for easy understanding at a glance;

• Very accurate CPU-usage tracking for processes;

• Can add multiple tray icons to monitor CPU, Disk, GPU, Network and more;

• Identifies which process has loaded a DLL file;

• Identifies which process is running an open window;

• Enables view of complete data about any process, including threads, memory usage, handles, objects
and any other salient information;

• Can kill an entire process tree, including any processes started by the one you choose to kill;

• Can suspend a process, freezing all its threads so they do nothing;

• Can see which thread in a process is maxing out the CPU.

NB: It is advisable to use Process Explorer alongside the Process Monitor because Process Explorer provides some features

which enable the analyst to interact with the process to analyse further the behaviour of the malicious process.

For a quick review of the system and the running processes, Process Explorer has an option enabling the

analyst to look up all hashes on VirusTotal and display the number of detections. For example, in the picture

presented below, the user can see that the process name ‘malware.exe’ (which is the child process of

‘explorer.exe’) has 61 out of 70 detections, showing a high probability that this application is malicious.

Examining the Properties windows (opened when the user double-clicks on the process), shown on the right side

of the picture, can provide another set of useful information, for example, the user under which the process is

running, strings in the memory, active threads, active network connections that the malware is initiating and the

full path of the executable on the disk.

 FIGURE 22: PROCESS EXPLORER – ‘MALWARE.EXE’ PROPERTIES

Process Explorer is part of the SysInternals Suite package and, at the time of writing, can be downloaded

from the following website: https://docs.microsoft.com/en-us/sysinternals/downloads/process-explorer

https://docs.microsoft.com/en-us/sysinternals/downloads/process-explorer

29

 Regshot

Regshot is a tool that allows an analyst to perform two snapshots of the Windows Registry (before and

after the infection) in order to identify what changes have been made in the registry or what files were dropped

by the malicious executable. Afterwards, the analyst can use this information to create an IoC.

 The GUI of the Regshot tool is presented in the picture below:

 FIGURE 23: REGSHOT – SNAPSHOT SEQUENCE

In the example presented below, after running and comparing the second shot with the first one made

when the system was clean, the analyst has identified that the executable ‘malware.exe’ creates data in the

registry at ‘HKLM\SOFTWARE\Microsoft\Windows\CurrentVersion\Run\malware’:

‘C:\WINDOWS\SysWOW64\malware.exe’ to gain persistence on the system. Checking the entire registry report,

which keeps track of all changes that occur, will help to give the analyst a clear picture regarding the behaviour

of the malicious application.

FIGURE 24: REGSHOT – SNAPSHOT REPORT

At the time of writing, the Regshot tool can be downloaded from the following website:

https://sourceforge.net/projects/regshot

Regshot usage steps:

1. Take the first shot of the system’s registry

when the system is clean.

2. Run the malware sample.

3. Take the second shot of the system’s registry

after infection.

4. Press the ‘Compare’ button in order to

compare the two generated snapshots.

5. Analyse the report generated.

6. Start over on a new, clean system.

https://sourceforge.net/projects/regshot/

30

 INetSim

INetSim is a Linux-based software suite that allows the user to simulate multiple standard Internet services

on a virtual machine used for investigations. By using this tool, the analyst can monitor the network behaviour

of the malware sample without connecting it to the Internet. If you are carrying out the investigations in

Windows, the easiest way of using this tool is to use the Linux VM (where the INetSim tool is configured and

running) as a gateway for the Windows VM. The setup of the tool is presented in the picture below:

FIGURE 25: INETSIM – SETUP

FIGURE 26: INETSIM – RUNNING SERVICES OUTPUT

At the time of writing, the Regshot tool can be downloaded from the following website:

https://www.inetsim.org/downloads.html

After running the tool, the image on the left illustrates

all the services emulated by INetSim, including their

default port.

In order to change the configuration setup of

the tool for adding or removing services, the user has

to modify the file ‘etc/inetsim/inetsim.conf’.

When running, INetSim records all

inbound/outbound connections, so the analyst can

build IOCs based on the connections that the

malicious file is trying to make.

https://www.inetsim.org/downloads.html

31

5.3 Sandboxing

To limit the spread of infection and protect their environment, malware analysts run the malware sample

inside a sandbox solution. Sandbox tools usually offer the option to dump the process memory, so the analyst

can have a better picture of what is happening in the RAM.

Malware authors know that, if their malware sample is running inside a virtual machine or sandbox solution,

it is likely that the sample is being analysed by a reverse engineer or automated solution, so they usually

implement a different check. For more information regarding the types of checks that the malware may

implement, please check the section on malware self-protection in Chapter 2.

Multiple free sandboxing solutions, where an analyst can upload the sample and wait for the report, are

available on the Internet. At the time of writing, the best-known are:

- www.malwr.com

- www.hybrid-analysis.com

- www.any.run

- www.joesandbox.com

- www.cuckoosandbox.org

- www.sandbox.anlyz.io

- www.analyze.intezer.com

 Cuckoo Sandbox

This handbook will present features and specifications of Cuckoo Sandbox because this sandbox is

known as the leading open-source automated malware analysis system. Using the sandbox, analysts can

automate the task of analysing any malicious file under Windows, macOS, Linux or Android. The sandbox can be

deployed locally and will require a host (the management software) and multiple sandbox clients (virtual

machines for analysis).

Cuckoo Sandbox features:

- Takes screenshots of the execution of the malware

- Intercepts deleted and downloaded files

- Dumps memory of the malware processes

- Runs concurrent analyses on multiple machines

- Dumps generated network traffic in PCAP format

- Recursively monitors newly spawned processes

- Traces relevant API calls for behavioural analysis

- Acquires full memory dumps of the VM

http://www.malwr.com/
http://www.hybrid-analysis.com/
http://www.any.run/
http://www.joesandbox.com/
http://www.cuckoosandbox.org/
http://www.sandbox.anlyz.io/
http://www.analyze.intezer.com/

32

The following diagram shows Cuckoo's architecture:

14

FIGURE 27: CUCKOO – SANDBOX ARCHITECTURE

Due to its modular design, Cuckoo can be used as a standalone application or integrated into larger

frameworks. The sandbox is accessible using the web console from which the malware samples were submitted

for analysis. The web console is presented in the picture below:

FIGURE 28: CUCKOO – SANDBOX WEB CONSOLE

After the files are submitted to the sandbox using the web console, they are executed, with all activities

logged and included in the final report. The analyst can access and read the report by using the web console.

Cuckoo sandbox has several reporting formats, including human-readable format, MAEC (Malware Attribute

Enumeration and Characterization) format – a standard language developed by MITRE – and the ability to export

a data report to another format.

At the time of writing, more information regarding the installation and usage of the Cuckoo Sandbox solution

can be found on the webpage https://cuckoo.readthedocs.io/en/latest/installation/host/installation

14 https://cuckoo.readthedocs.io/en/latest/introduction/what/

https://cuckoo.readthedocs.io/en/latest/installation/host/installation
https://cuckoo.readthedocs.io/en/latest/introduction/what/

33

 Windows Sandbox

In Windows 10, Version 1903 (May 2019 Update), Windows included a new feature called Windows

Sandbox. The Sandbox environment does not require too many resources from the system and uses only around

100 MB of disk space.

The Windows Sandbox environment is presented in Figure 29 below.

FIGURE 29: WINDOWS – SANDBOX GUI

Windows Sandbox requirements:

• x64 architecture

• Virtualisation capabilities enabled in BIOS

• At least 4GB of RAM (8GB recommended)

• At least 1 GB of free disk space (SSD recommended)

• At least 2 CPU cores (4 cores with hyperthreading recommended)

Every time the analyst runs the Windows Sandbox Feature, it will create a new clean installation of

Windows 10. After the analysis of the binary is complete, and the analyst closes the Sandbox environment,

everything that was in the environment is deleted. By using this technique, the analyst can easily test malicious

or untrusted applications while ensuring the work environment remains safe and clean.

One important aspect of this solution is that it requires the user to activate Microsoft’s hypervisor15.

The Sandbox also offers the ability to customise different aspects of the environment, for example:

15 Windows Sandbox is available on 64-bit versions of Windows 10 Pro, Enterprise and Education. It is not

available for the Home edition (https://docs.microsoft.com/en-us/virtualization/hyper-v-on-windows/about/)

https://docs.microsoft.com/en-us/virtualization/hyper-v-on-windows/about/

34

• Enable or disable the virtualised GPU

• Enable or disable networking in the sandbox

• Share folders from the host

• Run a startup script or program

To enable this option, the Sandbox looks for a configuration file that has a ‘.WSB’ extension. More

information on how to enable and configure the Windows Sandbox can be found on the Microsoft Community

blog. 16

5.4 Debuggers

At first glance, a debugger seems much like a disassembler: both display examined specimens’ code in

assembly and they offer similar lists of functions, strings, etc. The difference is that a debugger offers the ability

to perform detailed monitoring of malicious code execution, including insight into memory, registers, stack and

control elements. The benefit of debugging is the opportunity to run the code, control the execution (instruction

by instruction, breakpoints, etc.) and see particular values in registers, parameters of functions, and their return

values, which gives a better understanding of the code.

There are several open-source debuggers for executables: WinDbg,17 x64dbg,18 Immunity Debugger,19

OllyDbg.20 The following examples are demonstrated using x64dbg.

 Breakpoint

When a suspicious specimen was

analysed in IDA, the ‘InternetWriteFile’ API

function call was identified at addresses

‘0x004010D5’ and ‘0x004010E4’. The

function, as its name suggests, sends data via

the network. Parameters of the function

define the destination (‘hFile’), data to be

sent (‘lpBuffer’), length of data to be sent

(‘dwNumberOfBytesToWrite’) and amount of

data sent (‘lpdwNumberOfBytesWritten’).

The destination is hardcoded in the

executable and has already been discovered

(see IDA Chapter 4.1). It is obvious that the

function at address ‘0x004010E4’ sent the ‘\n’

character. But the kind of data sent at address

16 https://techcommunity.microsoft.com/t5/windows-kernel-internals/windows-sandbox/ba-p/301849
17 https://docs.microsoft.com/en-us/windows-hardware/drivers/debugger/
18 https://x64dbg.com/
19 https://www.immunityinc.com/products/debugger/index.html
20 http://www.ollydbg.de/

FIGURE 30: IDA – PARAMETERS OF INTERNETWRITEFILE FUNCTION

https://techcommunity.microsoft.com/t5/windows-kernel-internals/windows-sandbox/ba-p/301849

35

‘0x004010D5’ is still unknown.

The easiest way to analyse it is by monitoring it in the debugger. After opening the executable in x64dbg,

a breakpoint should be set at the address ‘0x004010D5’ (found in IDA, the address from which the function was

called):

1. Right-click in the code area and choose ‘Go to’ > ‘Expression’ (or press CTRL+G). A dialog box appears.

2. Fill in the address in the dialog box and click on OK.

3. Set the breakpoint at the required address by right-click > ‘Breakpoint’ > ‘Toggle’ (or press F2).

4. The address with the breakpoint is highlighted in red.

FIGURE 31: X64DBG – SETTING A BREAKPOINT ON THE SPECIFIC ADDRESS

36

Then enable the debugger to run the

executable by pressing F9 (or through menu

‘Debug’ > ‘Run’). The debugger reaches the

breakpoint and stops. The data sent by

‘InternetWriteFile’ is now visible in the stack area.

There is a high probability that API

functions related to networking and file

manipulation are called several times during

program execution (a loop transmitting more than

one data packet, a loop processing more than one

file, one row of a file, etc.). It is worth observing

what other data is processed by such API

functions.

 Symbols and Intermodular calls

In the previous example, the address where the interest function was called from was known, telling us

where the breakpoint had to be set. If the address of interest is unknown, a survey of functions and their cross-

references must be carried out and x64dbg has built-in features for this: symbols and intermodular calls.

To

see a list of

symbols

(imported

external

functions),

switch to the

‘Symbols’ tab

and choose the

executable

name from all

modules (or

press CTRL+N).

The list does

not contain the

particular

addresses

from which

imports are

called. These

are available in

intermodular

calls.

FIGURE 32: X64DBG – STACK MEMORY

FIGURE 33: X64DGB - SYMBOLS

37

Intermodular calls are shown via right-click > ‘Search for’ > ‘Current Module’ > ‘Intermodular calls’. A

table appears containing information about how (‘Disassembly’ column), where (‘Address’ column) and what

imported functions (‘Destination’ column) are called. It is possible to breakpoint interest calls by pressing F2 or

to investigate them in the code area where you can switch by double-clicking on them. A list of strings

occurrences can likewise be analysed (right-click in ‘CPU’ > ‘Search for’ > ‘Current Module’ > ‘String references’).

FIGURE 34: X64DBG - INTERMODULAR CALLS

 Deobfuscation

Debuggers also help when tackling obfuscated, uncompiled scripts. The following example

demonstrates an analysis of an obfuscated javascript ‘malware.js’. The script is 10 pages long (Figure 35 is a

cut-out just for illustration), and manual deobfuscation would be quite challenging.

FIGURE 35: OBFUSCATED JAVASCRIPT

38

A javascript file needs to be executed by a script interpreter. Windows has a native script engine

‘wscript.exe’ located in the ‘C:\Windows\System32\’ directory. Usually, such obfuscated javascript is designed

to drop or download a new malicious file and execute it. It is difficult to estimate what exactly it might be and

what to focus on in the debugger, but it is most probably trying to execute an arbitrary command in the operating

system, so API functions from ‘shell32.dll’ (eg. ‘ShellExecute’) need to be monitored.

From a debugger perspective, this means loading ‘wscript.exe’, telling ‘wscript.exe’ to process the

malicious javascript file, setting a breakpoint at ‘ShellExecute’ and analysing its context when triggered:

1. Load ‘wscript.exe’ (‘File’ > ‘Open’ > ‘C:\windows\system32\wscript.exe’).

2. Add ‘malware.js’ as a parameter (‘File’ > ‘Change Command Line’ and add path to the malicious file; e.g.

‘"C:\Windows\system32\wscript.exe" C:\malware.js’).

3. Switch to ‘Breakpoints’ panel > right-click > ‘Add dll breakpoint’ and fill in ‘shell32.dll’.

4. Run the execution and wait until the ‘shell32.dll’ breakpoint is triggered (if triggered, it means the DLL

and its symbols were loaded).

5. Switch to ‘Symbols’ panel > choose ‘shell32.dll’ among modules > filter ‘Execute’ functions and

breakpoint them.

6. Switch back to ‘Breakpoints’ panel and disable the DLL breakpoint from step 4 (otherwise all actions

connected with the dll would be breakpointed, not just the required manually breakpointed functions).

7. Run the execution and wait for one of the ‘Execute’ breakpoints to be triggered to examine the

parameters in the stack memory.

39

FIGURE 36: X32DBG – JAVASCRIPT DEBUGGING AND DLL BREAKPOINT

One of the breakpoints stops code execution at the ‘ShellExecuteExA’ function. The function has only

one parameter according to the documentation21 – a pointer to the ‘SHELLEXECUTEINFOA’ structure. To examine

it, right-click on the pointer value > ‘Follow DWORD in Dump’ > ‘Dump 1’. The fifth item of the structure is a

file/object/command to be executed. For details, right-click on it in ‘Dump 1’ area > ‘Follow DWORD in Dump’ >

‘Dump 2’ and adjust the format by right-clicking > ‘Text’ > ‘Extended ASCII’. In this case, it is a command initiating

21 https://docs.microsoft.com/en-us/windows/win32/api/shellapi/nf-shellapi-shellexecuteexa

40

a short powershell script which downloads a file ‘spy20.exe’ from ‘http://jblecsywt6925.cc/documents/’, save it

as ‘temp.exe’ and execute it.

FIGURE 37: X32DBG – STACK MEMORY EXAMINATION

 Patching

Malware can contain defence mechanisms to prevent or impede reverse-engineering. These take

various forms: detection of the presence of a monitoring tool (a debugger, Wireshark, Process monitor, etc.),

testing whether malware is executed in a virtual machine, checking internet connectivity or user interaction, and

many others, including whether it is being examined, for instance, in a sandbox. If a malware detects any of the

above, it can terminate itself or change its behaviour intentionally in order not to reveal its real properties.

An analyst can eliminate these defence mechanisms by patching – i.e. modifying malicious code. This

requires the analyst to identify a defence mechanism in the code, adjust it and save it as a new executable which

can be analysed without the impact of the defence mechanism.

41

The following example shows a defensive mechanism performed by the ‘IsDebuggerPresent’ function

from the standard ‘kernel32.dll’ library. By calling the function, the malware tests if it is running in the presence

of a debugger. The following steps show how to disable the defensive mechanism:

1. Identify the location of ‘IsDebuggerPresent’ function among the intermodular calls (right-click > ‘Search

for’ > ’Current Module’ > ‘Intermodular calls’) and double-click on it.

Evaluate the code and identify how the defence mechanism works and how it can be excluded. In this

example, a function ‘exit’ (called at ‘0x0040112A’ address) terminates its process if the function

‘IsDebuggerPresent’ (located at ‘0x0040111E’ address) returns Boolean ‘true’ (this means the

executable is running in a debugger). To evade this security check, simply rewrite the ‘exit’ function call

and previous ‘PUSH 1’ instruction as ‘nop’, as detailed below. The purpose of the ‘nop’ instruction is

that the CPU does nothing (nop = no operation), which is very useful when removing an original code,

which cannot just be deleted but must be replaced by valid instructions.

2. Mark the line with instruction to be replaced and press the space bar (or right-click on the line >

‘Assemble’).

3. A window with the original instruction appears. Rewrite the original instruction by required instruction

(‘nop’ in this case) and click on OK.

4. Repeat steps 3 – 4 for all lines to be modified.

5. After all modifications are complete, press ‘CTRL + P’ (right-click > ‘Patches’ is an alternative).

6. A new window containing a summary of all changes appears. Click on ‘Patch File’ and save it as a new

file.

42

FIGURE 38: X32DBG - PATCHING

43

6. Network traffic analysis

Analysing network traffic is essential in malware analysis. Looking at the network traffic enables the
analyst to find out which files are being exfiltrated, C2 servers,22 how the malware is communicating, and much
more.

One of the most widely-used network protocol analysis programs is Wireshark, which is a useful tool for
capturing network packets from the specified interface or displaying the network traffic from a packet-captured
file previously recorded. It allows you to view the packet data in as much detail as possible.

NB: At the time of writing, Wireshark could be downloaded from the following link:
https://www.wireshark.org/download.html

Deploying Wireshark, or any other packet capture software locally on the victim VM where the malware
is run, is theoretically possible but has a significant drawback. The malware with self-protection mechanisms
(mentioned in Chapter 2) may be able to detect that it is being monitored and hide its behaviour. Running
Wireshark on the default gateway of the victim machine, therefore, provides a better solution. Also, a SPAN port
can be set up on the switch to send a copy of all network packets seen on the victim VM’s port.

FIGURE 39: WIRESHARK INTERFACE SELECTION

Wireshark starts with the list of available interfaces. The interface from which malware is
communicating can be selected and the traffic can be captured. Eliminating all noise from the specified interface
makes it easier to identify the malware behaviour through that interface.

22 C2 Server: Command and Control Servers are attackers’ machines that are used to control malware.

https://www.wireshark.org/download.html

44

FIGURE 40: GETTING TRAFFIC STATISTICS

Wireshark also keeps useful statistics from the perspective of malware analysis. Connection endpoints
and conversations can be listed using the Statistics tab. While the endpoints list will allow the sorting of IP
endpoints using the number of transmitted packets, the conversations list can sort the conversations between
endpoints according to the number of bytes transferred between them and the duration of their data exchange.
This information can be used to analyse anomalous network behaviour with the IP addresses being contacted.

FIGURE 41: WIRESHARK ENDPOINTS LISTING

45

Using the ‘Resolved Addresses’ list, the domain names of these suspicious IP addresses can be easily
found with no extra effort, as seen in Figure 42.

FIGURE 42: RESOLVED ADDRESSES LIST

In addition to these features, setting up display filters in Wireshark helps to distinguish the packets of
interest. A variety of filtering options are available, ranging from simple protocol filters, such as HTTP, DNS, FTP,
etc., to more complex filters that can be combined by logical expressions according to need. The example in
Figure 43 shows the HTTP traffic of a suspected source IP address in which the packets contain the string ‘exe’.
Here, you can extract these two files simply by clicking on ‘File – Export Objects – HTTP’, which opens a dialog
box that allows these suspicious files to be saved, as shown in Figure 44. All the objects in the traffic can be
exported and saved using the object list.

FIGURE 43: FILTERING .EXE FILES FROM A SPECIFIC IP

46

FIGURE 44: EXPORTING OBJECTS FROM THE TRAFFIC

While Wireshark is a general-purpose network analysis tool for all needs, another network analysis tool,
Network Miner, is more useful and more comfortable from the perspective of forensics and malware.

NB: At the time of writing, Wireshark could be downloaded from the following link:
https://www.netresec.com/?page=NetworkMiner

It is convenient to view all the details gathered about hosts in a user-friendly interface. The files,
credentials, etc. transferred in the network traffic can be listed in different tabs. There are even separate lists of
DNS queries and the sessions which can all be filtered according to need.

https://www.netresec.com/?page=NetworkMiner

47

FIGURE 45: NETWORK MINER INTERFACE

48

7. Packed executables/unpacking

Malware executables are very often packed by authors to prevent antivirus detection and reverse-

engineering examination. This packing is accomplished either by standard software packing tools (e.g. UPX,

EXEStealth, ASProtect, FastPack, EXELock) or custom packers. Both are generally capable of compressing,

encoding and encrypting the original malicious executables. A packer encrypts the original executable and stores

it as raw data into a new executable file that contains code for decryption. If the new file is executed, the original

code is decrypted in memory and executed.

 Detection

There are several tips on how to distinguish whether an executable is packed: packed executables

comprise very few meaningful strings, few imports and functions and also have high entropy. This is because the

unpacking code is the only readable part (short code means few strings and little need for imports or functions)

and the data section (containing the original executable) is encrypted, which means no strings, no imports, no

functions and high entropy.

The figure below shows two histograms displaying occurrences of particular byte values in a packed

executable (above) and an unpacked executable (below). The important difference is that the packed executable

has a uniform distribution of byte values, in contrast with the unpacked executable which contains several peaks

caused by the most-used instructions (MOV, PUSH, CALL, etc.).

FIGURE 462: BYTE HISTOGRAM – PACKED EXECUTABLE (ABOVE) VS. UNPACKED EXECUTABLE (BELOW)

49

Several tools are available for recognition of a packed executable – PeStudio23 shows nonsensical strings

and calculates high entropy in the case of packed or encrypted executables; Detect It Easy24 can detect the type

of a packer (based on a database of known packers); function lists and imports are very poor when disassembling

packed executables in IDA.

FIGURE 47: PROPERTIES OF THE PACKED EXECUTABLE (A – STRINGS IN PESTUDIO, B – ENTROPY IN PESTUDIO, C – DETECT

IT EASY, D – FUNCTIONS & IMPORTS IN IDA)

Disassembler IDA and debugger OllyDbg can recognise packed executables or their particular sections.

These tools announce their findings during initial auto-analysis processing if a packed executable is opened.

Further analysis is still possible but results are very inaccurate.

23 See Chapter 3.2.6
24 https://www.ntinfo.biz/index.html#detect_it_easy

50

FIGURE 48: IDA (ON THE LEFT) & OLLYDBG (ON THE RIGHT) POINT OUT PACKED EXECUTABLES

 Unpacking

If an executable was packed by a well-known standard packer, there is likely to be a functional unpacker

available, either an official one (e.g. UPX packer/unpacker) or one developed by malware analysts or a

community developed solution.

A different approach is required in the case of unknown custom-packing algorithms. A versatile

procedure is to dump the unpacked code from memory after the packed executable is run and several tools exist

for this purpose (PE tools, Scylla, OllyDumpEx/OllyDump, etc.). Steps on how to use Scylla for unpacking

executables are as follows.

1. Run a packed executable.

2. Open Scylla and attach it to the process of the executable (the code is unpacked at this point).

3. Click on ‘Dump’ and save the new unpacked executable (Scylla opens the dialog for saving a new file).

During the dump operation, some important information like Entry Point and Import Address Table (IAT)

is lost.

4. To identify IAT from the attached process, click on ‘IAT Autosearch’.

5. Click on ‘Get Imports’ to extract IAT from the process. Scylla sometimes has trouble extracting all IAT

entries. If this is the case and Scylla fails to extract some entries (indicated by a red cross instead of a

green checkmark), it may not influence the further analysis, as it is possible to delete failed entries from

the listing and continue to the next steps. If the number of entries not extracted is high, it is better to

repeat the whole procedure from the beginning (i.e. terminate both Scylla and the executable process

and delete the dumped file from step 3).

6. Click on ‘Fix Dump’ and choose the dumped file from step 3.

7. Scylla creates a new fixed file with the same name as the dumped file with the suffix ‘_SCY.exe’.

51

FIGURE 49: UNPACKING WITH SCYLLA

The final unpacked executable with correct IAT is ready for static analysis – code, strings, functions and

imports are visible. Scylla sometimes fails to extract the correct entry point which is an obstacle for further

dynamic analysis. The correct original entry point must be identified by debugging the packed executable and

fixed in the PE header of the unpacked executable.

52

8. Incident response collaboration (Misp & Yara)

Yara rules create descriptions based on textual or binary patterns. Each rule contains a set of strings and

a Boolean expression that determines its logic. In general, each Yara rule has two sections: a strings description

and a condition. While the section containing the strings description can be omitted in some cases, the section

where the conditions are declared is mandatory.

One example of a basic Yara rule is presented below:

rule FirstYaraRule

{

 strings:

 $text_string = ‘malwaredomaine.com"

 $hex_string = { A2 24 ?? D8 23 FB }

 condition:

 $text_string or $hex_string

}

To perform Yara rules scanning, the investigator will need the set of rules he wants to use and the target

to be scanned (this can be a file, folder or running process). Since this handbook focuses only on malware that

runs under Windows OS, the executable that could be used to perform the scan can be downloaded from this

webpage: https://github.com/virustotal/yara/releases/tag/v4.0.0

The syntax used when performing the scanning is the following:

 yara [OPTIONS] RULES_FILE TARGET

The entire list with all the available parameters that could be used during the scanning is available at this

webpage: https://yara.readthedocs.io/en/v3.4.0/commandline.html

Besides creating his own set of Yara rules, an analyst can also check one of the following Yara rules

resources from trusted third parties:

• Florian Roth repository: https://github.com/Neo23x0/signature-base/tree/master/yara

• Yara Rules group GNU-GPLv2: https://github.com/Yara-Rules/rules

• Github repository: https://github.com/InQuest/awesome-yara

All the findings, including the Yara Rules compiled, could be uploaded, used and then shared on the MISP

Platform (Malware Information Sharing Platform).

 MISP is an open-source threat intelligence platform used by various organisations that run multiple

MISP instances for sharing IoCs. The investigator could add all the indicators into his own MISP instances and,

based on the data already stored in the database from other incidents, correlations could be made.

In the example presented on the left, all the binary files that

have the text string ‘malwaredomaine.com’ or the following

hexadecimal string ‘A2 24 ?? D8 23 FB’ embedded within a file,

will trigger the Yara rule named ‘FirstYaraRule’. The question

mark inside the hexadecimal string represents wild-cards

(bytes that are unknown and could match anything).

The Yara rule will be triggered if one of the strings (text string

or hex string) gives at least one match against the scanned files.

https://github.com/virustotal/yara/releases/tag/v4.0.0
https://yara.readthedocs.io/en/v3.4.0/commandline.html
https://github.com/Neo23x0/signature-base/tree/master/yara
https://github.com/Yara-Rules/rules
https://github.com/InQuest/awesome-yara

53

 The image below presents an event, based on the attributes of which the MISP platform has made a

correlation with other events that were in the database prior to this incident.

FIGURE 50 MISP – WEB INTERFACE25

The facility to share information via the MISP platform is very important, because this enables

collaborative investigation, and prevents you from analysing the same sample as someone else has already

analysed before you.

More information regarding the MISP platform can be found at the following website:

https://www.misp-project.org/index.html

25 Picture from Misp Website: https://www.misp-project.org/index.html

https://www.misp-project.org/index.html
https://www.misp-project.org/index.html

54

9. Conclusion

This handbook covers many tools and their essential usage. It is important to take into account that it

does not aim to demonstrate all features of each tool or all cases in which they may be used. Some tools have

very similar, or overlapping, capabilities. It is up to the reader to evaluate which tool is most appropriate to

accomplish a particular analytical task. Other alternatives also exist that are not listed in the handbook.

Static assembly code analysis is a very time-consuming process. It is advisable to combine it with

dynamic code analysis using debuggers for greater efficiency. It is ideal to start with basic static and behavioural

analysis and then continue with combined (static and dynamic) code analysis using the knowledge gathered

during the first two phases. When performing reverse code engineering, it is important for the analyst to set up

a lab environment, physically separate from the enterprise network, to avoid security breaches or incidents.

The results from malware analysis (IoCs) can be used as an input for further forensic investigation of the

current security incidents but also as an input for security monitoring (Firewall, network or host IDS/IPS, SIEM,

etc.) to prevent the same or similar attacks occurring in the future.

55

10. References

1. Hex Rays SA. 2020. IDA Pro - Hex Rays. [https://www.hex-rays.com/products/ida/]. Accessed
May 2020.

2. Hex Rays SA. 2020. F.L.I.R.T. - Hex Rays. [https://www.hex-rays.com/products/ida/tech/flirt/].
Accessed May 2020.

3. Microsoft. 2020. InternetOpenA function (wininet.h) - Win32 apps | Microsoft Docs.
[https://docs.microsoft.com/en-us/windows/win32/api/wininet/nf-wininet-internetopena].
Accessed May 2020.

4. Hex Rays SA. 2020. IDA Technology: Open Plug-In Architecture - Hex Rays.
[https://www.hex-rays.com/products/ida/tech/plugin/]. Accessed May 2020.

5. National Security Agency. 2020. Ghidra. [https://ghidra-sre.org/]. Accessed May 2020.

6. Microsoft. 2020. Debugging Tools for Windows (WinDbg, KD, CDB, NTSD) - Windows drivers |
Microsoft Docs. [https://docs.microsoft.com/en-us/windows-hardware/drivers/debugger/].
Accessed May 2020.

7. x64dbg Community. 2020. x64dbg. [https://x64dbg.com/]. Accessed May 2020.

8. Immunity Inc. 2020. Immunity Debugger.
[https://www.immunityinc.com/products/debugger/index.html]. Accessed May 2020.

9. Oleh Yuschuk. 2014. OllyDbg v1.10. [http://www.ollydbg.de]. Accessed May 2020.

10. Microsoft. 2020. ShellExecuteExA function (shellapi.h) - Win32 apps | Microsoft Docs.
[https://docs.microsoft.com/en-us/windows/win32/api/shellapi/nf-shellapi-shellexecuteexa].
Accessed May 2020.

11. NTInfo. 2020. Detect It Easy. [https://www.ntinfo.biz/index.html#detect_it_easy]. Accessed May
2020.

12. FireEye Labs. Obfuscated String Solver. Github. [https://github.com/fireeye/flare-floss]. Accessed
May 2020.

13. Strings2. [https://github.com/glmcdona/strings2]. Accessed May 2020.

14. Practical Binary Analysis. 2018. Dennis Andriesse. No Starch Press (December 18, 2018)

15. Mastering Malware Analysis. 2019. Alexey Kleymenov. Packt Publishing; 1 edition (June 6, 2019)

16. Procmon [https://docs.microsoft.com/en-us/sysinternals/downloads/procmon]. Accessed May
2020.

17. Process Monitor for Dynamic Malware Analysis. [https://docs.microsoft.com/en-
us/archive/blogs/motiba/process-monitor-for-dynamic-malware-analysis]. Windows Sandbox
Hari Pulapaka. [https://techcommunity.microsoft.com/t5/windows-kernel-internals/windows-
sandbox/ba-p/301849]. Accessed May 2020.

18. Practical Malware Analysis. 2012. Michael Sikorski and Andrew Honig. No Starch Press; 1 edition

(February 1, 2012)

56

19. Mastering Reverse Engineering – Re-engineer your ethical hacking skills. 2018. Reginald
Wongs. Packt Publishing; 1 edition (October 31, 2018)

20. Hands-On Network Forensics: Investigate Network Attacks and Find Evidence Using Common
Network Forensic Tools. 2019. Nipun Jaswal. Packt Publishing; 1 edition (March 30, 2019)

21. Yaniv Assor. 2016. Anti-VM and Anti-Sandbox Explained.
[https://www.cyberbit.com/blog/endpoint-security/anti-vm-and-anti-sandbox-explained/].
Accessed May 2020.

22. Infosec Institute. 2016. How Malware Detects Virtualized Environment (and its
Countermeasures). [https://resources.infosecinstitute.com/how-malware-detects-virtualized-
environment-and-its-countermeasures-an-overview/]. Accessed May 2020

