

An Unsupervised Framework for Detecting

Anomalous Messages from Syslog Log Files

Risto Vaarandi, Bernhards Blumbergs and Markus Kont

© 2018 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current

or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective

works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.

This paper has been accepted for publication at the 2018 IEEE/IFIP Network Operations and Management Symposium, and the

final version of the paper is included in Proceedings of the 2018 IEEE/IFIP Network Operations and Management Symposium

(DOI: 10.1109/NOMS.2018.8406283)

An Unsupervised Framework for Detecting

Anomalous Messages from Syslog Log Files

Risto Vaarandi, Bernhards Blumbergs

TUT Centre for Digital Forensics and Cyber Security

Tallinn University of Technology

Tallinn, Estonia

firstname.lastname@ttu.ee

Markus Kont

Technology Branch

NATO CCDCOE

Tallinn, Estonia

firstname.lastname@ccdcoe.org

Abstract—System logs provide valuable information about the

health status of IT systems and computer networks. Therefore,

log file monitoring has been identified as an important system

and network management technique. While many solutions have

been developed for monitoring known log messages, the detection

of previously unknown error conditions has remained a difficult

problem. In this paper, we present a novel data mining based

framework for detecting anomalous log messages from syslog-

based system log files. We also describe the implementation and

performance of the framework in a large organizational network.

Keywords—anomaly detection for system logs; pattern mining

from log files; LogCluster

I. INTRODUCTION

Network faults, service failures, security incidents, and
other error conditions often trigger log messages which provide
detailed error information to system administrators. Therefore,
automated system log monitoring for known error conditions is
a widely acknowledged practice. Many existing log monitoring
tools like Swatch [1] and LogSurfer [2] are rule-based and
assume that a human expert defines patterns (e.g., regular
expressions) for log messages that require further attention.
However, this approach does not allow to identify previously
unknown error conditions. For addressing this issue, various
anomaly detection methods have been suggested, including
hidden Markov models [3, 4], principal component analysis
(PCA) [5], decision trees [6], entropy based algorithms [7, 8],
support vector machines (SVM) [9, 10], neural networks [11],
and logistic regression [12].

For identifying anomalous messages with rule-based log
monitoring tools, system administrators often use the following
approach – rules are defined for matching all known log
messages that reflect normal system activity, while remaining
messages are highlighted as anomalous. Since this task requires
a lot of expertise, data mining tools have often been suggested
for discovering event patterns from log files. However, such
tools assume that human experts interpret detected knowledge
and create the rules manually which is time-consuming and
expensive. In this paper, we propose a novel data mining based
framework for fully automated rule discovery for real-time
detection of anomalous messages from syslog-based logs.
Although the framework does not require human intervention
and adapts to changes in the system, the human expert can

nevertheless augment the framework with hand-written rules
(e.g., our framework implementation employs rules for EWMA
based alerting). The remainder of this paper is organized as
follows – section II reviews related work, section III presents
the framework, section IV describes its implementation and
performance, and section V outlines future work.

II. RELATED WORK

Yamanishi and Maruyama [3] have suggested an
unsupervised method for network failure prediction from
syslog error events. The method divides the log into time slots
(sessions) and converts original events into event type symbols.
Sessions are modeled with hidden Markov model mixtures,
while model parameters are learned in unsupervised fashion.
An anomaly score is calculated for each session, with one
reported as anomalous if its score exceeds a threshold. Salfner
[4] has proposed a supervised failure prediction algorithm
which is based on hidden semi-Markov models and takes
numerical error event type sequences for its input. The
approach employs Levenshtein distance function for grouping
similar events under the same event type ID. According to
experiments conducted with telecommunication log data, the
method compares favorably to other approaches. Xu, Huang,
Fox, Patterson and Jordan [5] have suggested an unsupervised
method which detects anomalous event sequences using PCA.
The method employs source code analysis for detecting event
types and event type sequences. Sequences are then converted
into vectors, where each vector attribute reflects the number of
events of some type in the sequence. During detection process,
vectors containing frequently occurring patterns are filtered
out, since they are highly likely to correspond to normal event
sequences. For detecting anomalous sequences, PCA is applied
for remaining vectors. Reidemeister, Jiang and Ward [6] have
proposed a supervised method which harnesses two-stage
clustering algorithm for mining event type patterns from
labeled log files that contain error messages. Detected patterns
are then converted into bit vectors that are used for building
decision trees with the C4.5 algorithm. Finally, decision trees
are employed for detecting recurrent fault conditions from log
files. Oliner, Aiken and Stearley [7] have developed an
unsupervised algorithm called Nodeinfo which considers
events from previous n days for anomaly detection. Nodeinfo
divides events from each network node into hourly windows
(nodehours), and calculates Shannon information entropy

This work has been supported by Estonian IT Academy (StudyITin.ee).

based anomaly score for them. If the nodehour contains log file
words that have appeared only for few nodes, the nodehour
will get a high anomaly score. According to experiments on
supercomputer logs, Nodeinfo performs particularly well for
groups of similar nodes that produce similar log messages.
Makanju, Zincir-Heywood, Milios and Latzel [8] have
developed the STAD framework which also uses the concept
of nodehour. STAD employs information content clustering for
dividing the set of nodehours into clusters, so that nodehours
containing similar alert types are assigned to the same cluster.
Rule-based anomaly detection is then used for finding clusters
that contain nodehours with alert messages. Kimura,
Watanabe, Toyono and Ishibashi [9] have proposed a
supervised fault prediction method which extracts log message
templates (message types) during its first step. Extracted
information is used for building log feature vectors that
characterize message frequency, periodicity, burstiness, and
correlation with maintenance and failures. Vectors are used for
training SVM with Gaussian kernel for future fault prediction.
Featherstun and Fulp [10] have suggested the use of spectrum-
kernel SVM for predicting disk failures on Linux platform
from syslog message sequences. The method extracts facility,
severity, and specific fault message substrings from each
syslog message, and converts them into numerals that are
provided to SVM. The method is able to predict hard disk
failures one day in advance with an accuracy of 80%. Du, Li,
Zheng and Srikumar [11] have proposed the DeepLog
algorithm that uses LSTM neural networks for detecting
anomalies in event type sequences, predicting the probability
of an event type from previous types in the sequence. In
addition, DeepLog implements anomaly detection for event
type parameters (such as IP addresses). The algorithm also
accepts human feedback about false positives for improving its
future accuracy. He, Zhu, He and Lyu [12] have compared the
anomaly detection performance of logistic regression, decision
tree, SVM, clustering, PCA, and invariants mining, applying
the methods to event log data in numerical format. During the
experiments on two publicly available data sets, supervised
methods were found to be superior to unsupervised algorithms.

III. DETECTING ANOMALOUS EVENT LOG MESSAGES

A. Overview of the Framework

Existing methods described in the previous section have
several drawbacks. Firstly, a number of methods are supervised
and rely on labeled training data sets [4, 6, 9, 10, 11] which are
expensive to produce. Also, such methods need retraining if
system changes introduce new log messages. Some methods
from section II assume that event logs contain error messages
only [3, 4], while in production environments most messages
reflect normal system activity. Some methods are designed for
specific fields only like disk fault prediction [10], or rely on
mining message patterns from source code [5] which might not
be always available. Finally, several methods do not report
individual anomalous messages, but rather entire time slots that
contain such messages [7, 8].

In this section, we present an unsupervised framework for
detecting anomalous messages from syslog log files that
addresses aforementioned shortcomings. The framework is

data mining based and relies on the following assumption – in
a well-maintained IT system, most log messages reflect normal
system activity, while messages corresponding to system
faults, security incidents, and other error conditions appear
infrequently (similar assumption has been made in other
research papers, e.g., [5]). Therefore, frequently occurring
message patterns naturally represent a baseline of normal
system activity. Our framework has been designed for logs
collected with a widely used syslog protocol [13], and it is
assumed that each message has the following attributes –
timestamp, sender hostname, facility (type of the sender, e.g.,
daemon), severity, program name, and free-form message text.
We also assume that each log file line fully represents some
syslog message. Fig. 1 depicts the implementation of the
proposed framework. For detecting frequent message patterns,
the framework employs the LogCluster algorithm [14] and its
Perl-based implementation [15]. We have selected LogCluster,
since according to our recent experiments it compares
favorably to publicly available implementations of other log
mining algorithms [14]. LogCluster based mining module runs
daily, in order to keep the database of frequent patterns up to
date with changes in the surrounding environment. Patterns
from the last N days and W weeks (so called mining windows)
are then used for creating Simple Event Correlator (SEC) [16]
rules that match messages reflecting normal system activity.
Any message which does not match these rules is classified as
anomalous. Since the mining windows are sliding, the
framework is able to adapt to system changes and new log
message types.

The rule mining module does not attempt to discover rules
for each host separately, since this involves several challenges.
Firstly, some hosts do not produce many log messages which
complicates the detection of frequent message patterns.
Secondly, when a new host appears in the network, it is unclear
what filtering rules should be applied to it. For addressing these
issues, the mining is conducted for groups of similar hosts
which ensures that sufficient amount of past log data is
available (the Nodeinfo algorithm uses a similar approach [7]).
For the sake of simplicity, the remainder of this section
assumes that all hosts belong to one group.

LogCluster is a data clustering algorithm which detects line
patterns from textual log file of n lines for the user-given
support threshold s (relative support threshold r means support
threshold r * n / 100). Each log file line is split into words by
user-given separator (default is whitespace). If a word appears
in l lines, its support is defined as l and relative support as l / n
* 100. LogCluster begins its work with a pass over the log file
for finding frequent words – words with the support of at least
s. During the second data pass, LogCluster splits the log file
into clusters that contain at least s lines. All lines from the
same cluster match the same line pattern of frequent words and
wildcards. Each wildcard has the form *{m,n} and matches at
least m and at most n words (m ≤ n). Finally, each line pattern
that represents a cluster is reported to the user, for example,
sshd: Connection from *{1,1} port *{1,1}. As discussed in [5],
a detected pattern is meaningful if its words represent constant
parts of the log message, while wildcards capture variable parts
(e.g., IP addresses). The support of the pattern is defined as the
number of lines in the cluster it represents.

SEC

SEC message filtering rules

Visualization

(ElasticStack based)

LogCluster based rule mining
Daily updates

Past event logs

syslog messages anomalous messages

System administrators

Fig. 1. A framework for detecting anomalous syslog messages.

The latest version of the LogCluster tool [15] can decouple
individual phases of the algorithm which allows for parallel
execution and pipelining. For example, LogCluster can be
configured to detect frequent words only and store them into a
dictionary file with absolute and relative supports. Also,
frequent words can be loaded from dictionary for detecting
clusters with a single data pass. Finally, clusters can be stored
to dump files, so that repeated post-processing of detected
patterns can be accomplished without re-executing the entire
mining process. However, LogCluster and other support
threshold based log mining algorithms have several drawbacks
[14, 17] which complicate automated rule discovery. Firstly,
they have a single thread of control which makes them less
scalable to very large data sets. Also, with higher support
thresholds overgeneralized patterns could be detected (e.g.,
*{2,5} for *{1,10}) that can mistakenly match many anomalous
messages. Furthermore, low support thresholds often lead to
overfitting, where meaningful clusters are split into subclusters
with too specific patterns (e.g., sshd: Closing connection to
10.1.1.1). Obviously, such patterns do not cover all messages
representing normal system activity. Finally, a rare fault
condition can trigger a large amount of similar messages within
a short time [1], and a mining module might detect a frequent
pattern from them. The rest of this section discusses how the
framework addresses these challenges.

For increasing the scalability of the framework, daily rule
mining is split into independent tasks which can be executed in
parallel. Log file messages are first divided by syslog facility
and then by program name. Fig. 2 summarizes the rule mining
procedure (it assumes that days are numbered in a consecutive
order). For each facility, the procedure first identifies the
names of frequent programs that have produced at least Tprog
messages during the previous day. If a frequent program has
been frequent during at least K * N days in the N day mining
window, the framework executes pattern discovery procedure
for the message text field of that program. Parameter K is
called daily relevance threshold (0 ≤ K ≤ 1), and setting it to
higher value prevents learning filtering rules for programs with
rare but intensive logging activity. The pattern discovery
procedure has been summarized in Fig. 3 and will be described
in subsection IIIB. Since log messages from infrequent
programs might also contain long-term patterns that reflect
normal system activity, a separate pattern discovery procedure

with the mining window of W weeks and weekly relevance
threshold L (0 ≤ L ≤ 1) is executed for such messages. This
procedure will be discussed in subsection IIIC.

B. Pattern Discovery from Program Message Texts

For mitigating overgeneralization and overfitting, we first
attempted to find a method for selecting a single support
threshold value that would generate all required meaningful
patterns. We evaluated several methods, most notably head/tail
breaks hierarchical clustering algorithm [18]. The algorithm
iteratively divides data points with heavy-tailed distribution
into head and tail by average or mean. We used variants of this
algorithm for clustering words by their occurrence time (word
occurrence times are known to have a heavy-tailed distribution
[19]). Our aim was to identify a support threshold for capturing
proper amount of frequent words for creating suitable patterns,
but experiments did not yield acceptable results. Thus, the
framework selects a number of support thresholds heuristically,
starting from a higher value which is iteratively lowered until a
stop condition evaluates true. In the framework
implementation, the following relative support thresholds have
been used: s1 = 5, s2 = 2.5, s3 = 1, si = si-3 / 10 for i > 3, so that
si * n / 100 > 100 (n is the number of lines in input data set).

find_rules(N, K, W, L, Tprog, Tweight, Tweak, Tprec)

D := # of the current day

for each f in { facilities } do

 Af,D-1 := { names of programs that produced at least

 Tprog messages for facility f at day D-1 }

 Of,D-1 := { log messages for facility f at day D-1 that

 did not originate from programs in Af,D-1 }

 for each P in Af,D-1 do

 n := |{ d | D-N ≤ d ≤ D-1, P Af,d }|

 if n ≥ K * N then

 Ff,P := discover_patterns(P, N, K, Tweight, Tweak, Tprec)

 build filtering rules for facility f and program P,

 using patterns from Ff,P

 fi

 do

 If := discover long term patterns from log messages in

 Of,D-1 … Of,D-7*W with relevance threshold L

 build filtering rules for facility f,

 using patterns from If

do

Fig. 2. Rule mining procedure.

If S denotes the set of selected support thresholds in relative

notation (i.e., s S, 0 < s ≤ 100) and min is the smallest
threshold from S, the set of frequent words for min contains all
frequent words for higher thresholds. Also, we have found that
frequent words appearing during few days only are related to
overfitting or bursts of anomalous messages. These
observations have motivated the following mining procedure.
First, LogCluster is used for creating a dictionary file of
frequent words for support threshold min. After that, dictionary
is used for mining patterns in fast single-pass mode with

support thresholds from S. For each threshold s S, frequent
word is selected from dictionary if it appears in dictionaries of
at least K * N days in the mining window, having support of at
least s (in Fig. 3, sd,w denotes relative support of word w at day
d). For easing further post-processing, patterns detected for

each s S are stored into a dump file (in Fig. 3, Bd,s denotes
patterns for support threshold s and day d).

In the following, we describe the algorithm that selects
patterns for building message classification rules, with F
denoting the set of selected patterns. The algorithm begins with
initializing F to all patterns from sets Bd,s in the mining
window. For mitigating overfitting, LogCluster supports a
pattern joining heuristic which merges too specific patterns
based on word weight [14]. The word weight falls to interval
(0..1] for each word in the pattern, reflecting how strongly the
word is associated with other words in this pattern. If a word
weight remains below the word weight threshold, it is replaced
with a wildcard and similar patterns are merged. For example,
if IP addresses are weakly associated with other words in
patterns Closing connection to 10.1.1.1 and Closing connection
to 10.1.1.2, merging produces the pattern Closing connection
to *{1,1}. According to experiments, word weight thresholds
0.5...0.8 produce best results for mitigating overfitting [14].
The pattern joining heuristic is applied to each Bd,s with word
weight threshold Tweight, and resulting patterns Rd,s are joined to
the set of selected patterns F (original patterns are not
discarded at this point, since heuristic might accidentally create
too generic patterns which will be pruned at further steps).

For excluding overgeneralized patterns from F, the
framework employs several techniques. First, according to our
observation, the pattern has a high likelihood of being too
generic if it contains one word and is detected only for one
support threshold during daily pattern mining. More formally,
we call the pattern a weak pattern at day d if it was detected
only for one support threshold from log messages of day d. If
pattern x has been detected during n days in the mining
window and x has been weak during m days (m ≤ n ≤ N), x is
excluded from F if it has one word and m / n ≥ Tweak.

For measuring the degree of generality of a pattern from F,
the framework calculates its precision, with an overgeneralized
pattern receiving a low precision score. If pattern x consists of
k elements (words or wildcards), precision of ith element
prec(xi) is defined as follows: prec(xi) = 1 if xi is a word;
prec(xi) = m / n if xi is a wildcard *{m,n}. For finding the
precision of pattern x, we have used the following functions:

precj(x) = i
k
=1 prec(xi) / lj, where j=1,2,3. Parameters l1 and l2

denote the maximum and minimum number of words pattern x
can match, respectively, while l3 is defined as max(l2, k). Since

i
k
=1 prec(xi) ≤ lj for j=1,2,3, then 0 < precj(x) ≤ 1. For

example, suppose pattern x is *{1,6} error *{0,4}. Then k = 3,
prec(x1) = 1/6, prec(x2) = 1 and prec(x3) = 0. Also, l1 = 11, l2 =
2 and l3 = 3, and therefore prec1(x) ≈ 0.11, prec2(x) ≈ 0.58 and
prec3(x) ≈ 0.39. In other words, any wildcard not matching
exactly one word lowers the precision score, with a wildcard
matching word sequences with a wide variety of lengths having
greater impact (such wildcards are called generic wildcards).
Therefore, lower precision indicates that pattern has a generic
nature, and the framework excludes a pattern from F if its
precision is smaller than Tprec. The prec3() function has been
used for measuring precision in framework implementation,
since unlike prec1(), it does not penalize patterns with many
words and few generic wildcards, and unlike prec2(), it does
not favor patterns with generic wildcards *{0,n}.

discover_patterns(P, N, K, Tweight, Tweak, Tprec)

D := # of the current day

S := { support thresholds for program P at day D-1 }

W := { frequent words for program P and

 support threshold min(S) at day D-1 }

for each s in S do

 V :=

 for each w in W do

 n := |{d | D-N ≤ d ≤ D-1, sd,w ≥ s}|

 if n ≥ K * N then V := V { w } fi

 done

 BD-1,s := { message text patterns mined with LogCluster

 for program P at day D-1 with support

 threshold s and frequent words from V }

done

F :=

for each d in (D-N,…,D-1) do

 S := { support thresholds for program P at day d }

 Cd :=

 for each s in S do

 Rd,s := { merged patterns for Bd,s with word

 weight threshold set to Tweight }

 F := F Bd,s Rd,s

 Cd := Cd Bd,s Rd,s

 done

done

E :=

for each x in F do

 n := |{d | D-N ≤ d ≤ D-1, x Cd}|

 m := |{d | D-N ≤ d ≤ D-1, x Cd, x is weak at day d}|

 if (m / n ≥ Tweak AND x has only one word)

 then E := E { x } fi

done

F := F \ E; E :=

for each x in F do

 if precision(x) < Tprec then E := E { x } fi

done

F := F \ E; E :=

for each x in F do

 n := |{d | D-N ≤ d ≤ D-1, x Cd}|

 if n < K * N then E := E { x } fi

done

F := F \ E; E :=

for each x in F do

 if (y F, x ≠ y, x ~ y) then E := E { x } fi

done

return F \ E

Fig. 3. Pattern discovery procedure for message text field of a program.

After that, the pattern selection algorithm excludes all
patterns from F that have been detected for less than K * N
days in the mining window. This step will ensure that only

repeatedly occurring frequent patterns will be kept in F, and
learning filtering rules from accidental bursts of anomalous
messages is avoided. Also, if pattern y matches all events that
are matched by pattern x, we say that y is more general than x
and denote it as x ~ y. During its final step, pattern selection
procedure excludes all patterns from F that have more general
patterns in F, since excluded patterns are redundant for
deriving filtering rules.

A rule for suppressing messages for successful

SSH logins

type=Suppress

ptype=RegExp

pattern=sshd(?:\[\d+\])?: Accepted(?:\s+)(?:(?:\S+)

(?:\s+)){1,1}for(?:\s+)(?:(?:\S+)(?:\s+)){1,1}from

(?:\s+)(?:(?:\S+)(?:\s+)){1,1}port(?:\s+)(?:(?:\S+)

(?:(?:\s+)|(?:\s+)?$)){1,1}(?:\s+)?$

desc=Accepted *{1,1} for *{1,1} from *{1,1} port *{1,1}

A rule for suppressing SNMP daemon messages for

incoming queries

type=Suppress

ptype=RegExp

pattern=snmpd(?:\[\d+\])?: Connection(?:\s+)from(?:\s+)

UDP\:(?:\s+)(?:(?:\S+)(?:(?:\s+)|(?:\s+)?$)){1,1}

(?:\s+)?$

desc=Connection from UDP: *{1,1}

A rule for suppressing anacron messages for upcoming

job executions

type=Suppress

ptype=RegExp

pattern=anacron(?:\[\d+\])?: Will(?:\s+)run(?:\s+)job

(?:\s+)(?:(?:\S+)(?:\s+)){1,1}in(?:\s+)(?:(?:\S+)

(?:\s+)){1,1}min\.(?:\s+)?$

desc=Will run job *{1,1} in *{1,1} min.

Fig. 4. Sample automatically created SEC rules for matching messages that

reflect normal system activity.

C. Building Filtering Rules

Discovery of long-term frequent message patterns for
infrequent programs is conducted similarly to the algorithm in
Fig. 3, except that the mining window size is W weeks and the
window is divided into weekly slots. For example, if W = 4
and weekly relevance threshold L = 0.75, patterns are mined
from the logs of last 4 weeks, and patterns detected for less
than 3 weekly slots are dropped. Also, LogCluster is executed
for messages of all infrequent programs of a given syslog
facility, and patterns are mined from the concatenation of
program name and message text fields. Finally, an additional
heuristic is used for excluding overgeneralized patterns – if the
pattern has a wildcard for the program name or entire message
text (e.g., sshd: *{1,20} or *{1,1}: daemon stopped), the
pattern will be excluded from further consideration.

After discovering patterns for frequent and infrequent
programs (sets Ff,P and If from Fig. 2, respectively), the rule
mining module derives regular expressions from detected
patterns and uses them for creating SEC Suppress rules. Fig. 4
depicts some automatically created rules for sshd, snmpd, and
anacron that originate from our framework implementation.
For efficient processing of incoming messages, the SEC rule
base is arranged hierarchically [16] by facility and program

name. The rule base also contains dedicated rule files for
custom message processing rules written by human experts.

IV. FRAMEWORK IMPLEMENTATION AND PERFORMANCE

For measuring the performance of the framework, we have
evaluated its implementation during 3 months (92 days) in a
large EU organization. The framework was running with the
following parameters: N = 10, K = 0.5, W = 4, L = 0.75, Tprog
= 1000, Tweight = Tweak = Tprec = 0.5. During evaluation, the
framework processed OS level syslog messages for auth,
authpriv, cron, daemon, kern, and mail facilities from 543
Linux servers with standardized OS configuration. Since the
servers generated similar log messages for aforementioned six
syslog facilities, we used one host group for them. Altogether,
296,699,550 messages were processed by the framework, with
1,879,209 messages (≈0.63%) passing SEC filtering rules and
classified as anomalous. During 92 days, 483-551 SEC rules
were automatically created by daily rule mining procedure
(412-469 rules were created for frequent programs). Table I
depicts message classification data for different facilities.

TABLE I. MESSAGE CLASSIFICATION BY SYSLOG FACILITY.

Facility # of all

messages

of anomalous

messages

of servers

generating

anomalous

messages

auth 3,672,497 34,904 224

authpriv 59,667,935 234,645 465

cron 22,249,354 9,000 200

daemon 198,129,740 494,545 508

kern 8,466,606 907,186 342

mail 4,513,418 198,929 153

Many anomalous messages represented previously
unknown fault conditions (e.g., disk issues) that would have
remained unnoticed in organizational monitoring system. As
can be seen from Table I, unusually large fraction (10.7%) of
kernel messages with kern facility were classified as
anomalous, and they constituted almost half (48.3%) of all
anomalous messages. 54.2% of kernel messages were various
SELinux warnings, and 22.6% were generated during system
reboots (most reboots were part of regular system maintenance,
although reboots can also be triggered by system crashes, e.g.,
executed by hypervisors after virtualization system failures).
From remaining kernel messages, most represented serious
system errors like file system corruption and out-of-memory
conditions. Majority of these error conditions triggered
hundreds or thousands messages – for example, during one
system crash 115,197 messages were logged (12.7% of all
anomalous kernel messages). We also observed similar error
message bursts for other facilities – for example, 75.8% of
anomalous messages for mail facility were triggered by file-
system-full condition on a single server. Anomalous messages
for daemon facility represented various fault conditions or
configuration errors, like temporary network outages or
connectivity issues with remote services, failures to restart a
daemon due to a syntax error in the configuration file, etc.
Most anomalous messages for auth and authpriv facilities
reflected authentication errors, while for cron facility execution

errors for scheduled jobs were reported. We also discovered
that some anomalous messages represented rare but normal
system activity. Such activities included creation of new user
accounts (authpriv facility), modification of scheduled jobs
(cron facility), and system service restarts (daemon facility).

For evaluating the classification precision and recall of the
framework, we reviewed classification results for log messages
that were triggered by vulnerability scanning of the internal
network during four non-contiguous days. 1454 log messages
were triggered on 231 servers, with 779 messages representing
normal system activity (e.g., incoming connection to an SSH
server) and 675 messages reflecting malicious actions (e.g.,
SSH password probing for non-existing user accounts). The
framework classified 683 messages as anomalous, while 656 of
them were malicious messages, yielding the precision of 96.0%
and recall of 97.1%. During another 10 hour experiment, we
used the Bbuzz protocol fuzzing framework [20] for pen-
testing Linux kernel and UDP services of a test server that was
connected to the framework. Protocol fuzzing triggered 46,370
and 7,957 error messages from snmpd and kernel, respectively,
and all messages were classified as anomalous.

After detection, the framework sends anomalous messages
to ElasticStack for searching and visualization purposes.
Although ElasticStack provides system administrators with an
efficient interface for investigating anomalies and fault
conditions, it does not allow for distinguishing critical errors
(e.g., a system crash) from events of lower priority (e.g., an
accidental login failure). As discussed before, critical faults
often trigger a large number of anomalous messages within a
short time frame. For identifying such faults in a timely
fashion, we have added SEC post-processing rules into the
framework for EWMA based anomaly detection. With this
approach, moving average µt of a time series {X1, X2, ...} is
calculated as µ1 = X1, and µt = α * Xt + (1 - α) * µt-1 for t > 1.
If the value of α is close to 1, only recent values of a time
series influence µt, while values close to 0 distribute weight
more evenly. In our setup, the stream of anomalous messages
is divided into 5 minute time slots for each (host, facility) tuple,
and moving average µt and standard deviation σt are calculated
for the number of messages (i.e., Xt is the number of messages
in time slot t). The framework raises an alarm for time slot t
and (host, facility) tuple if |Xt - µt| > m * σt and Xt ≥ n (i.e., a
burst of at least n anomalous messages has been observed
during the last 5 minutes, where the number of messages is
more than m standard deviations away from average). For post-
processing anomalous messages, we have used the following
settings: α = 0.05, m = 3 and n = 100. During 92 day
experiment, 214 alarms were generated, with more than half of
them associated with system reboots. Alarms were also
triggered by out-of-memory and file-system-full conditions,
file system corruption events, and other major system faults.

V. FUTURE WORK

As for future work, we plan to augment our framework
with additional time series analysis methods. Our other
research goals include further development of the pattern
selection algorithm for automated classification, and studying
methods for assigning anomaly scores to individual anomalous
messages.

ACKNOWLEDGMENT

The authors express their gratitude to Dr. Rain Ottis and
Prof. Olaf Maennel for supporting this work.

REFERENCES

[1] Stephen E. Hansen and E. Todd Atkins, “Automated System Monitoring
and Notification With Swatch,” in Proceedings of 1993 USENIX Large
Installation System Administration Conference, pp. 145-152.

[2] http://logsurfer.sourceforge.net

[3] Kenji Yamanishi and Yuko Maruyama, “Dynamic Syslog Mining for
Network Failure Monitoring,” in Proceedings of 2005 ACM SIGKDD
International Conference on Knowledge Discovery in Data Mining, pp.
499-508.

[4] Felix Salfner, “Event-based Failure Prediction: An Extended Hidden
Markov Model Approach,” PhD Thesis, Humboldt-Universität zu
Berlin, 2008.

[5] Wei Xu, Ling Huang, Armando Fox, David Patterson and Michael I.
Jordan, “Detecting Large-Scale System Problems by Mining Console
Logs,” in Proceedings of 2010 International Conference on Machine
Learning, pp. 37-46.

[6] Thomas Reidemeister, Miao Jiang and Paul A.S. Ward, “Mining
Unstructured Log Files for Recurrent Fault Diagnosis,” in Proceedings
of 2011 IEEE/IFIP International Symposium on Integrated Network
Management, pp. 377-384.

[7] Adam Oliner, Alex Aiken and Jon Stearley, “Alert Detection in System
Logs,” in Proceedings of 2008 IEEE International Conference on Data
Mining, pp. 959-964.

[8] Adetokunbo Makanju, A. Nur Zincir-Heywood, Evangelos E. Milios
and Markus Latzel, “Spatio-Temporal Decomposition, Clustering and
Identification for Alert Detection in System Logs,” in Proceedings of
2012 ACM Symposium on Applied Computing, pp. 621-628.

[9] Tatsuaki Kimura, Akio Watanabe, Tsuyoshi Toyono and Keisuke
Ishibashi, “Proactive Failure Detection Learning Generation Patterns of
Large-scale Network Logs,” in Proceedings of 2015 International
Conference on Network and Service Management, pp. 8-14.

[10] R. Wesley Featherstun and Errin W. Fulp, “Using Syslog Message
Sequences for Predicting Disk Failures,” in Proceedings of 2010
USENIX Large Installation System Administration Conference.

[11] Min Du, Feifei Li, Guineng Zheng and Vivek Srikumar, “DeepLog:
Anomaly Detection and Diagnosis from System Logs through Deep
Learning,” in Proceedings of 2017 ACM Conference on Computer and
Communications Security, pp. 1285-1298.

[12] Shilin He, Jieming Zhu, Pinjia He and Michael R. Lyu, “Experience
Report: System Log Analysis for Anomaly Detection,” in Proceedings
of 2016 IEEE International Symposium on Software Reliability
Engineering, pp. 207-218.

[13] C. Lonvick, “The BSD syslog Protocol,” RFC 3164, 2001.

[14] Risto Vaarandi and Mauno Pihelgas, “LogCluster – A Data Clustering
and Pattern Mining Algorithm for Event Logs,” in Proceedings of 2015
International Conference on Network and Service Management, pp. 1-7.

[15] https://ristov.github.io/logcluster/

[16] Risto Vaarandi, Bernhards Blumbergs and Emin Çalışkan, “Simple
Event Correlator – Best Practices for Creating Scalable Configurations,”
in Proceedings of 2015 IEEE CogSIMA Conference, pp. 96-100.

[17] Adetokunbo Makanju, “Exploring Event Log Analysis With Minimum
Apriori Information,” PhD Thesis, University of Dalhousie, 2012.

[18] Bin Jiang, “Head/tail Breaks: A New Classification Scheme for Data
with a Heavy-tailed Distribution,” The Professional Geographer, 65(3),
pp. 482-494.

[19] Risto Vaarandi, “A Data Clustering Algorithm for Mining Patterns From
Event Logs,” in Proceedings of 2003 IEEE Workshop on IP Operations
and Management, pp. 119-126.

[20] Bernhards Blumbergs and Risto Vaarandi, “Bbuzz: A Bit-aware Fuzzing
Framework for Network Protocol Systematic Reverse Engineering and
Analysis,” in Proceedings of 2017 IEEE Military Communications
Conference, pp. 707-712.

