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Abstract—System logs provide valuable information about the 

health status of IT systems and computer networks. Therefore, 

log file monitoring has been identified as an important system 

and network management technique. While many solutions have 

been developed for monitoring known log messages, the detection 

of previously unknown error conditions has remained a difficult 

problem. In this paper, we present a novel data mining based 

framework for detecting anomalous log messages from syslog-

based system log files. We also describe the implementation and 

performance of the framework in a large organizational network. 

Keywords—anomaly detection for system logs; pattern mining 

from log files; LogCluster 

I. INTRODUCTION 

Network faults, service failures, security incidents, and 
other error conditions often trigger log messages which provide 
detailed error information to system administrators. Therefore, 
automated system log monitoring for known error conditions is 
a widely acknowledged practice. Many existing log monitoring 
tools like Swatch [1] and LogSurfer [2] are rule-based and 
assume that a human expert defines patterns (e.g., regular 
expressions) for log messages that require further attention. 
However, this approach does not allow to identify previously 
unknown error conditions. For addressing this issue, various 
anomaly detection methods have been suggested, including 
hidden Markov models [3, 4], principal component analysis 
(PCA) [5], decision trees [6], entropy based algorithms [7, 8], 
support vector machines (SVM) [9, 10], neural networks [11], 
and logistic regression [12]. 

For identifying anomalous messages with rule-based log 
monitoring tools, system administrators often use the following 
approach – rules are defined for matching all known log 
messages that reflect normal system activity, while remaining 
messages are highlighted as anomalous. Since this task requires 
a lot of expertise, data mining tools have often been suggested 
for discovering event patterns from log files. However, such 
tools assume that human experts interpret detected knowledge 
and create the rules manually which is time-consuming and 
expensive. In this paper, we propose a novel data mining based 
framework for fully automated rule discovery for real-time 
detection of anomalous messages from syslog-based logs. 
Although the framework does not require human intervention 
and adapts to changes in the system, the human expert can 

nevertheless augment the framework with hand-written rules 
(e.g., our framework implementation employs rules for EWMA 
based alerting). The remainder of this paper is organized as 
follows – section II reviews related work, section III presents 
the framework, section IV describes its implementation and 
performance, and section V outlines future work.  

II. RELATED WORK 

Yamanishi and Maruyama [3] have suggested an 
unsupervised method for network failure prediction from 
syslog error events. The method divides the log into time slots 
(sessions) and converts original events into event type symbols. 
Sessions are modeled with hidden Markov model mixtures, 
while model parameters are learned in unsupervised fashion. 
An anomaly score is calculated for each session, with one 
reported as anomalous if its score exceeds a threshold. Salfner 
[4] has proposed a supervised failure prediction algorithm 
which is based on hidden semi-Markov models and takes 
numerical error event type sequences for its input. The 
approach employs Levenshtein distance function for grouping 
similar events under the same event type ID. According to 
experiments conducted with telecommunication log data, the 
method compares favorably to other approaches. Xu, Huang, 
Fox, Patterson and Jordan [5] have suggested an unsupervised 
method which detects anomalous event sequences using PCA. 
The method employs source code analysis for detecting event 
types and event type sequences. Sequences are then converted 
into vectors, where each vector attribute reflects the number of 
events of some type in the sequence. During detection process, 
vectors containing frequently occurring patterns are filtered 
out, since they are highly likely to correspond to normal event 
sequences. For detecting anomalous sequences, PCA is applied 
for remaining vectors. Reidemeister, Jiang and Ward [6] have 
proposed a supervised method which harnesses two-stage 
clustering algorithm for mining event type patterns from 
labeled log files that contain error messages. Detected patterns 
are then converted into bit vectors that are used for building 
decision trees with the C4.5 algorithm. Finally, decision trees 
are employed for detecting recurrent fault conditions from log 
files. Oliner, Aiken and Stearley [7] have developed an 
unsupervised algorithm called Nodeinfo which considers 
events from previous n days for anomaly detection. Nodeinfo 
divides events from each network node into hourly windows 
(nodehours), and calculates Shannon information entropy 
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based anomaly score for them. If the nodehour contains log file 
words that have appeared only for few nodes, the nodehour 
will get a high anomaly score. According to experiments on 
supercomputer logs, Nodeinfo performs particularly well for 
groups of similar nodes that produce similar log messages. 
Makanju, Zincir-Heywood, Milios and Latzel [8] have 
developed the STAD framework which also uses the concept 
of nodehour. STAD employs information content clustering for 
dividing the set of nodehours into clusters, so that nodehours 
containing similar alert types are assigned to the same cluster. 
Rule-based anomaly detection is then used for finding clusters 
that contain nodehours with alert messages. Kimura, 
Watanabe, Toyono and Ishibashi [9] have proposed a 
supervised fault prediction method which extracts log message 
templates (message types) during its first step. Extracted 
information is used for building log feature vectors that 
characterize message frequency, periodicity, burstiness, and 
correlation with maintenance and failures. Vectors are used for 
training SVM with Gaussian kernel for future fault prediction. 
Featherstun and Fulp [10] have suggested the use of spectrum-
kernel SVM for predicting disk failures on Linux platform 
from syslog message sequences. The method extracts facility, 
severity, and specific fault message substrings from each 
syslog message, and converts them into numerals that are 
provided to SVM. The method is able to predict hard disk 
failures one day in advance with an accuracy of 80%. Du, Li, 
Zheng and Srikumar [11] have proposed the DeepLog 
algorithm that uses LSTM neural networks for detecting 
anomalies in event type sequences, predicting the probability 
of an event type from previous types in the sequence. In 
addition, DeepLog implements anomaly detection for event 
type parameters (such as IP addresses). The algorithm also 
accepts human feedback about false positives for improving its 
future accuracy. He, Zhu, He and Lyu [12] have compared the 
anomaly detection performance of logistic regression, decision 
tree, SVM, clustering, PCA, and invariants mining, applying 
the methods to event log data in numerical format. During the 
experiments on two publicly available data sets, supervised 
methods were found to be superior to unsupervised algorithms. 

III. DETECTING ANOMALOUS EVENT LOG MESSAGES 

A. Overview of the Framework 

Existing methods described in the previous section have 
several drawbacks. Firstly, a number of methods are supervised 
and rely on labeled training data sets [4, 6, 9, 10, 11] which are 
expensive to produce. Also, such methods need retraining if 
system changes introduce new log messages. Some methods 
from section II assume that event logs contain error messages 
only [3, 4], while in production environments most messages 
reflect normal system activity. Some methods are designed for 
specific fields only like disk fault prediction [10], or rely on 
mining message patterns from source code [5] which might not 
be always available. Finally, several methods do not report 
individual anomalous messages, but rather entire time slots that 
contain such messages [7, 8]. 

In this section, we present an unsupervised framework for 
detecting anomalous messages from syslog log files that 
addresses aforementioned shortcomings. The framework is 

data mining based and relies on the following assumption – in 
a well-maintained IT system, most log messages reflect normal 
system activity, while messages corresponding to system 
faults, security incidents, and other error conditions appear 
infrequently (similar assumption has been made in other 
research papers, e.g., [5]). Therefore, frequently occurring 
message patterns naturally represent a baseline of normal 
system activity. Our framework has been designed for logs 
collected with a widely used syslog protocol [13], and it is 
assumed that each message has the following attributes – 
timestamp, sender hostname, facility (type of the sender, e.g., 
daemon), severity, program name, and free-form message text. 
We also assume that each log file line fully represents some 
syslog message. Fig. 1 depicts the implementation of the 
proposed framework. For detecting frequent message patterns, 
the framework employs the LogCluster algorithm [14] and its 
Perl-based implementation [15]. We have selected LogCluster, 
since according to our recent experiments it compares 
favorably to publicly available implementations of other log 
mining algorithms [14]. LogCluster based mining module runs 
daily, in order to keep the database of frequent patterns up to 
date with changes in the surrounding environment. Patterns 
from the last N days and W weeks (so called mining windows) 
are then used for creating Simple Event Correlator (SEC) [16] 
rules that match messages reflecting normal system activity. 
Any message which does not match these rules is classified as 
anomalous. Since the mining windows are sliding, the 
framework is able to adapt to system changes and new log 
message types. 

The rule mining module does not attempt to discover rules 
for each host separately, since this involves several challenges. 
Firstly, some hosts do not produce many log messages which 
complicates the detection of frequent message patterns. 
Secondly, when a new host appears in the network, it is unclear 
what filtering rules should be applied to it. For addressing these 
issues, the mining is conducted for groups of similar hosts 
which ensures that sufficient amount of past log data is 
available (the Nodeinfo algorithm uses a similar approach [7]). 
For the sake of simplicity, the remainder of this section 
assumes that all hosts belong to one group. 

LogCluster is a data clustering algorithm which detects line 
patterns from textual log file of n lines for the user-given 
support threshold s (relative support threshold r means support 
threshold r * n / 100). Each log file line is split into words by 
user-given separator (default is whitespace). If a word appears 
in l lines, its support is defined as l and relative support as l / n 
* 100. LogCluster begins its work with a pass over the log file 
for finding frequent words – words with the support of at least 
s. During the second data pass, LogCluster splits the log file 
into clusters that contain at least s lines. All lines from the 
same cluster match the same line pattern of frequent words and 
wildcards. Each wildcard has the form *{m,n} and matches at 
least m and at most n words (m ≤ n). Finally, each line pattern 
that represents a cluster is reported to the user, for example, 
sshd: Connection from *{1,1} port *{1,1}. As discussed in [5], 
a detected pattern is meaningful if its words represent constant 
parts of the log message, while wildcards capture variable parts 
(e.g., IP addresses). The support of the pattern is defined as the 
number of lines in the cluster it represents.  
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Fig. 1. A framework for detecting anomalous syslog messages. 

 

The latest version of the LogCluster tool [15] can decouple 
individual phases of the algorithm which allows for parallel 
execution and pipelining. For example, LogCluster can be 
configured to detect frequent words only and store them into a 
dictionary file with absolute and relative supports. Also, 
frequent words can be loaded from dictionary for detecting 
clusters with a single data pass. Finally, clusters can be stored 
to dump files, so that repeated post-processing of detected 
patterns can be accomplished without re-executing the entire 
mining process. However, LogCluster and other support 
threshold based log mining algorithms have several drawbacks 
[14, 17] which complicate automated rule discovery. Firstly, 
they have a single thread of control which makes them less 
scalable to very large data sets. Also, with higher support 
thresholds overgeneralized patterns could be detected (e.g., 
*{2,5} for *{1,10}) that can mistakenly match many anomalous 
messages. Furthermore, low support thresholds often lead to 
overfitting, where meaningful clusters are split into subclusters 
with too specific patterns (e.g., sshd: Closing connection to 
10.1.1.1). Obviously, such patterns do not cover all messages 
representing normal system activity. Finally, a rare fault 
condition can trigger a large amount of similar messages within 
a short time [1], and a mining module might detect a frequent 
pattern from them. The rest of this section discusses how the 
framework addresses these challenges. 

For increasing the scalability of the framework, daily rule 
mining is split into independent tasks which can be executed in 
parallel. Log file messages are first divided by syslog facility 
and then by program name. Fig. 2 summarizes the rule mining 
procedure (it assumes that days are numbered in a consecutive 
order). For each facility, the procedure first identifies the 
names of frequent programs that have produced at least Tprog 
messages during the previous day. If a frequent program has 
been frequent during at least K * N days in the N day mining 
window, the framework executes pattern discovery procedure 
for the message text field of that program. Parameter K is 
called daily relevance threshold (0 ≤ K ≤ 1), and setting it to 
higher value prevents learning filtering rules for programs with 
rare but intensive logging activity. The pattern discovery 
procedure has been summarized in Fig. 3 and will be described 
in subsection IIIB. Since log messages from infrequent 
programs might also contain long-term patterns that reflect 
normal system activity, a separate pattern discovery procedure 

with the mining window of W weeks and weekly relevance 
threshold L (0 ≤ L ≤ 1) is executed for such messages. This 
procedure will be discussed in subsection IIIC. 

B. Pattern Discovery from Program Message Texts 

For mitigating overgeneralization and overfitting, we first 
attempted to find a method for selecting a single support 
threshold value that would generate all required meaningful 
patterns. We evaluated several methods, most notably head/tail 
breaks hierarchical clustering algorithm [18]. The algorithm 
iteratively divides data points with heavy-tailed distribution 
into head and tail by average or mean. We used variants of this 
algorithm for clustering words by their occurrence time (word 
occurrence times are known to have a heavy-tailed distribution 
[19]). Our aim was to identify a support threshold for capturing 
proper amount of frequent words for creating suitable patterns, 
but experiments did not yield acceptable results. Thus, the 
framework selects a number of support thresholds heuristically, 
starting from a higher value which is iteratively lowered until a 
stop condition evaluates true. In the framework 
implementation, the following relative support thresholds have 
been used: s1 = 5, s2 = 2.5, s3 = 1, si = si-3 / 10 for i > 3, so that 
si * n / 100 > 100 (n is the number of lines in input data set). 

 

find_rules(N, K, W, L, Tprog, Tweight, Tweak, Tprec) 

 

D := # of the current day 

for each f in { facilities } do 

  Af,D-1 := { names of programs that produced at least  

            Tprog messages for facility f at day D-1 } 

  Of,D-1 := { log messages for facility f at day D-1 that 

            did not originate from programs in Af,D-1 } 

  for each P in Af,D-1 do 

    n := |{ d | D-N ≤ d ≤ D-1, P  Af,d }| 

    if n ≥ K * N then 

      Ff,P := discover_patterns(P, N, K, Tweight, Tweak, Tprec)  

      build filtering rules for facility f and program P, 

        using patterns from Ff,P 

    fi 

  do 

  If := discover long term patterns from log messages in 

        Of,D-1  …  Of,D-7*W with relevance threshold L 

  build filtering rules for facility f,  

    using patterns from If 

do 

 

Fig. 2. Rule mining procedure. 



If S denotes the set of selected support thresholds in relative 

notation (i.e., s  S, 0 < s ≤ 100) and min is the smallest 
threshold from S, the set of frequent words for min contains all 
frequent words for higher thresholds. Also, we have found that 
frequent words appearing during few days only are related to 
overfitting or bursts of anomalous messages. These 
observations have motivated the following mining procedure. 
First, LogCluster is used for creating a dictionary file of 
frequent words for support threshold min. After that, dictionary 
is used for mining patterns in fast single-pass mode with 

support thresholds from S. For each threshold s  S, frequent 
word is selected from dictionary if it appears in dictionaries of 
at least K * N days in the mining window, having support of at 
least s (in Fig. 3, sd,w denotes relative support of word w at day 
d). For easing further post-processing, patterns detected for 

each s  S are stored into a dump file (in Fig. 3, Bd,s denotes 
patterns for support threshold s and day d). 

In the following, we describe the algorithm that selects 
patterns for building message classification rules, with F 
denoting the set of selected patterns. The algorithm begins with 
initializing F to all patterns from sets Bd,s in the mining 
window. For mitigating overfitting, LogCluster supports a 
pattern joining heuristic which merges too specific patterns 
based on word weight [14]. The word weight falls to interval 
(0..1] for each word in the pattern, reflecting how strongly the 
word is associated with other words in this pattern. If a word 
weight remains below the word weight threshold, it is replaced 
with a wildcard and similar patterns are merged. For example, 
if IP addresses are weakly associated with other words in 
patterns Closing connection to 10.1.1.1 and Closing connection 
to 10.1.1.2, merging produces the pattern Closing connection 
to *{1,1}. According to experiments, word weight thresholds 
0.5...0.8 produce best results for mitigating overfitting [14]. 
The pattern joining heuristic is applied to each Bd,s with word 
weight threshold Tweight, and resulting patterns Rd,s are joined to 
the set of selected patterns F (original patterns are not 
discarded at this point, since heuristic might accidentally create 
too generic patterns which will be pruned at further steps). 

For excluding overgeneralized patterns from F, the 
framework employs several techniques. First, according to our 
observation, the pattern has a high likelihood of being too 
generic if it contains one word and is detected only for one 
support threshold during daily pattern mining. More formally, 
we call the pattern a weak pattern at day d if it was detected 
only for one support threshold from log messages of day d. If 
pattern x has been detected during n days in the mining 
window and x has been weak during m days (m ≤ n ≤ N), x is 
excluded from F if it has one word and m / n ≥ Tweak. 

For measuring the degree of generality of a pattern from F, 
the framework calculates its precision, with an overgeneralized 
pattern receiving a low precision score. If pattern x consists of 
k elements (words or wildcards), precision of ith element 
prec(xi) is defined as follows: prec(xi) = 1 if xi is a word; 
prec(xi) = m / n if xi is a wildcard *{m,n}. For finding the 
precision of pattern x, we have used the following functions: 

precj(x) = i
k
=1 prec(xi) / lj, where j=1,2,3. Parameters l1 and l2 

denote the maximum and minimum number of words pattern x 
can match, respectively, while l3 is defined as max(l2, k). Since 

i
k
=1 prec(xi) ≤ lj for j=1,2,3, then 0 < precj(x) ≤ 1. For 

example, suppose pattern x is *{1,6} error *{0,4}. Then k = 3, 
prec(x1) = 1/6, prec(x2) = 1 and prec(x3) = 0. Also, l1 = 11, l2 = 
2 and l3 = 3, and therefore prec1(x) ≈ 0.11, prec2(x) ≈ 0.58 and 
prec3(x) ≈ 0.39. In other words, any wildcard not matching 
exactly one word lowers the precision score, with a wildcard 
matching word sequences with a wide variety of lengths having 
greater impact (such wildcards are called generic wildcards). 
Therefore, lower precision indicates that pattern has a generic 
nature, and the framework excludes a pattern from F if its 
precision is smaller than Tprec. The prec3() function has been 
used for measuring precision in framework implementation, 
since unlike prec1(), it does not penalize patterns with many 
words and few generic wildcards, and unlike prec2(), it does 
not favor patterns with generic wildcards *{0,n}. 

 

discover_patterns(P, N, K, Tweight, Tweak, Tprec) 

 

D := # of the current day 

S := { support thresholds for program P at day D-1 } 

W := { frequent words for program P and 

       support threshold min(S) at day D-1 } 

 

for each s in S do 

  V :=  

  for each w in W do 

    n := |{d | D-N ≤ d ≤ D-1, sd,w ≥ s}| 

    if n ≥ K * N then V := V  { w } fi 

  done 

  BD-1,s := { message text patterns mined with LogCluster 

            for program P at day D-1 with support 

            threshold s and frequent words from V } 

done 

F :=  

for each d in (D-N,…,D-1) do 

  S := { support thresholds for program P at day d } 

  Cd :=  

  for each s in S do 

    Rd,s := { merged patterns for Bd,s with word  

             weight threshold set to Tweight } 

    F := F  Bd,s  Rd,s 

    Cd := Cd  Bd,s  Rd,s 

  done 

done 

E :=  

for each x in F do 

  n := |{d | D-N ≤ d ≤ D-1, x  Cd}| 

  m := |{d | D-N ≤ d ≤ D-1, x  Cd, x is weak at day d}| 

  if (m / n ≥ Tweak AND x has only one word) 

    then E := E  { x } fi 

done 

F := F \ E; E :=  

for each x in F do 

  if precision(x) < Tprec then E := E  { x } fi 

done 

F := F \ E; E :=  

for each x in F do 

  n := |{d | D-N ≤ d ≤ D-1, x  Cd}| 

  if n < K * N then E := E  { x } fi 

done 

F := F \ E; E :=  

for each x in F do 

  if (y  F, x ≠ y, x ~ y) then E := E  { x } fi 

done 

return F \ E 

 

Fig. 3. Pattern discovery procedure for message text field of a program. 

After that, the pattern selection algorithm excludes all 
patterns from F that have been detected for less than K * N 
days in the mining window. This step will ensure that only 



repeatedly occurring frequent patterns will be kept in F, and 
learning filtering rules from accidental bursts of anomalous 
messages is avoided. Also, if pattern y matches all events that 
are matched by pattern x, we say that y is more general than x 
and denote it as x ~ y. During its final step, pattern selection 
procedure excludes all patterns from F that have more general 
patterns in F, since excluded patterns are redundant for 
deriving filtering rules. 

 

# A rule for suppressing messages for successful 

# SSH logins 

 

type=Suppress 

ptype=RegExp 

pattern=sshd(?:\[\d+\])?: Accepted(?:\s+)(?:(?:\S+) 

(?:\s+)){1,1}for(?:\s+)(?:(?:\S+)(?:\s+)){1,1}from 

(?:\s+)(?:(?:\S+)(?:\s+)){1,1}port(?:\s+)(?:(?:\S+) 

(?:(?:\s+)|(?:\s+)?$)){1,1}(?:\s+)?$ 

desc=Accepted *{1,1} for *{1,1} from *{1,1} port *{1,1} 

 

# A rule for suppressing SNMP daemon messages for 

# incoming queries 

 

type=Suppress 

ptype=RegExp 

pattern=snmpd(?:\[\d+\])?: Connection(?:\s+)from(?:\s+) 

UDP\:(?:\s+)(?:(?:\S+)(?:(?:\s+)|(?:\s+)?$)){1,1} 

(?:\s+)?$ 

desc=Connection from UDP: *{1,1} 

 

# A rule for suppressing anacron messages for upcoming 

# job executions 

 

type=Suppress 

ptype=RegExp 

pattern=anacron(?:\[\d+\])?: Will(?:\s+)run(?:\s+)job 

(?:\s+)(?:(?:\S+)(?:\s+)){1,1}in(?:\s+)(?:(?:\S+) 

(?:\s+)){1,1}min\.(?:\s+)?$ 

desc=Will run job *{1,1} in *{1,1} min. 

 

Fig. 4. Sample automatically created SEC rules for matching messages that 

reflect normal system activity. 

C. Building Filtering Rules 

Discovery of long-term frequent message patterns for 
infrequent programs is conducted similarly to the algorithm in 
Fig. 3, except that the mining window size is W weeks and the 
window is divided into weekly slots. For example, if W = 4 
and weekly relevance threshold L = 0.75, patterns are mined 
from the logs of last 4 weeks, and patterns detected for less 
than 3 weekly slots are dropped. Also, LogCluster is executed 
for messages of all infrequent programs of a given syslog 
facility, and patterns are mined from the concatenation of 
program name and message text fields. Finally, an additional 
heuristic is used for excluding overgeneralized patterns – if the 
pattern has a wildcard for the program name or entire message 
text (e.g., sshd: *{1,20} or *{1,1}: daemon stopped), the 
pattern will be excluded from further consideration. 

After discovering patterns for frequent and infrequent 
programs (sets Ff,P and If from Fig. 2, respectively), the rule 
mining module derives regular expressions from detected 
patterns and uses them for creating SEC Suppress rules. Fig. 4 
depicts some automatically created rules for sshd, snmpd, and 
anacron that originate from our framework implementation. 
For efficient processing of incoming messages, the SEC rule 
base is arranged hierarchically [16] by facility and program 

name. The rule base also contains dedicated rule files for 
custom message processing rules written by human experts.  

IV. FRAMEWORK IMPLEMENTATION AND PERFORMANCE 

For measuring the performance of the framework, we have 
evaluated its implementation during 3 months (92 days) in a 
large EU organization. The framework was running with the 
following parameters: N = 10, K = 0.5, W = 4, L = 0.75, Tprog 
= 1000, Tweight = Tweak = Tprec = 0.5. During evaluation, the 
framework processed OS level syslog messages for auth, 
authpriv, cron, daemon, kern, and mail facilities from 543 
Linux servers with standardized OS configuration. Since the 
servers generated similar log messages for aforementioned six 
syslog facilities, we used one host group for them. Altogether, 
296,699,550 messages were processed by the framework, with 
1,879,209 messages (≈0.63%) passing SEC filtering rules and 
classified as anomalous. During 92 days, 483-551 SEC rules 
were automatically created by daily rule mining procedure 
(412-469 rules were created for frequent programs). Table I 
depicts message classification data for different facilities. 

TABLE I.  MESSAGE CLASSIFICATION BY SYSLOG FACILITY. 

Facility # of all 

messages 

# of anomalous 

messages 

# of servers 

generating 

anomalous 

messages 

auth 3,672,497 34,904 224 

authpriv 59,667,935 234,645 465 

cron 22,249,354 9,000 200 

daemon 198,129,740 494,545 508 

kern 8,466,606 907,186 342 

mail 4,513,418 198,929 153 

 

Many anomalous messages represented previously 
unknown fault conditions (e.g., disk issues) that would have 
remained unnoticed in organizational monitoring system. As 
can be seen from Table I, unusually large fraction (10.7%) of 
kernel messages with kern facility were classified as 
anomalous, and they constituted almost half (48.3%) of all 
anomalous messages. 54.2% of kernel messages were various 
SELinux warnings, and 22.6% were generated during system 
reboots (most reboots were part of regular system maintenance, 
although reboots can also be triggered by system crashes, e.g., 
executed by hypervisors after virtualization system failures). 
From remaining kernel messages, most represented serious 
system errors like file system corruption and out-of-memory 
conditions. Majority of these error conditions triggered 
hundreds or thousands messages – for example, during one 
system crash 115,197 messages were logged (12.7% of all 
anomalous kernel messages). We also observed similar error 
message bursts for other facilities – for example, 75.8% of 
anomalous messages for mail facility were triggered by file-
system-full condition on a single server. Anomalous messages 
for daemon facility represented various fault conditions or 
configuration errors, like temporary network outages or 
connectivity issues with remote services, failures to restart a 
daemon due to a syntax error in the configuration file, etc. 
Most anomalous messages for auth and authpriv facilities 
reflected authentication errors, while for cron facility execution 



errors for scheduled jobs were reported. We also discovered 
that some anomalous messages represented rare but normal 
system activity. Such activities included creation of new user 
accounts (authpriv facility), modification of scheduled jobs 
(cron facility), and system service restarts (daemon facility). 

For evaluating the classification precision and recall of the 
framework, we reviewed classification results for log messages 
that were triggered by vulnerability scanning of the internal 
network during four non-contiguous days. 1454 log messages 
were triggered on 231 servers, with 779 messages representing 
normal system activity (e.g., incoming connection to an SSH 
server) and 675 messages reflecting malicious actions (e.g., 
SSH password probing for non-existing user accounts). The 
framework classified 683 messages as anomalous, while 656 of 
them were malicious messages, yielding the precision of 96.0% 
and recall of 97.1%. During another 10 hour experiment, we 
used the Bbuzz protocol fuzzing framework [20] for pen-
testing Linux kernel and UDP services of a test server that was 
connected to the framework. Protocol fuzzing triggered 46,370 
and 7,957 error messages from snmpd and kernel, respectively, 
and all messages were classified as anomalous.  

After detection, the framework sends anomalous messages 
to ElasticStack for searching and visualization purposes. 
Although ElasticStack provides system administrators with an 
efficient interface for investigating anomalies and fault 
conditions, it does not allow for distinguishing critical errors 
(e.g., a system crash) from events of lower priority (e.g., an 
accidental login failure). As discussed before, critical faults 
often trigger a large number of anomalous messages within a 
short time frame. For identifying such faults in a timely 
fashion, we have added SEC post-processing rules into the 
framework for EWMA based anomaly detection. With this 
approach, moving average µt of a time series {X1, X2, ...} is 
calculated as µ1 = X1, and µt = α * Xt + (1 - α) * µt-1 for t > 1. 
If the value of α is close to 1, only recent values of a time 
series influence µt, while values close to 0 distribute weight 
more evenly. In our setup, the stream of anomalous messages 
is divided into 5 minute time slots for each (host, facility) tuple, 
and moving average µt and standard deviation σt are calculated 
for the number of messages (i.e., Xt is the number of messages 
in time slot t). The framework raises an alarm for time slot t 
and (host, facility) tuple if |Xt - µt| > m * σt and Xt ≥ n (i.e., a 
burst of at least n anomalous messages has been observed 
during the last 5 minutes, where the number of messages is 
more than m standard deviations away from average). For post-
processing anomalous messages, we have used the following 
settings: α = 0.05, m = 3 and n = 100. During 92 day 
experiment, 214 alarms were generated, with more than half of 
them associated with system reboots. Alarms were also 
triggered by out-of-memory and file-system-full conditions, 
file system corruption events, and other major system faults. 

V. FUTURE WORK 

As for future work, we plan to augment our framework 
with additional time series analysis methods. Our other 
research goals include further development of the pattern 
selection algorithm for automated classification, and studying 
methods for assigning anomaly scores to individual anomalous 
messages. 
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