
Bbuzz: A Bit-aware Fuzzing Framework for
Network Protocol Systematic Reverse

Engineering and Analysis

Bernhards Blumbergs and Risto Vaarandi

c©IEEE, 2017. Personal use of this material is permitted. Permission from
IEEE must be obtained for all other uses, in any current or future media,
including reprinting/republishing this material for advertising or promotional
purposes, creating new collective works, for resale or redistribution to servers
or lists, or reuse of any copyrighted component of this work in other works.
This paper has been accepted for publication at the 2017 IEEE Military
Communications Conference, and the final version of the paper is included in
Proceedings of the 2017 IEEE Military Communications Conference. (DOI:
10.1109/MILCOM.2017.8170785)



Bbuzz: A Bit-aware Fuzzing Framework for
Network Protocol Systematic Reverse Engineering

and Analysis
Bernhards Blumbergs

NATO Cooperative Cyber Defence Centre of Excellence
IMCS UL, CERT.LV Laboratory

name.surname[a]cert.lv

Risto Vaarandi
Centre for Digital Forensics and Cyber Security

Tallinn University of Technology
name.surname[a]ttu.ee

Abstract—Fuzzing is a critical part of secure software devel-
opment life-cycle, for finding vulnerabilities, developing exploits,
and reverse engineering. This relies on appropriate approaches,
tools and frameworks. File and protocol fuzzing is well covered,
multiple approaches and implementations exist. Unfortunately,
assessed tools do not posses the required capabilities for working
with protocols, where constructing bit groups are not byte
aligned. In this paper, a systematic approach is proposed and
tool prototype developed for the cyber red teaming purposes. In
a case study, the developed Bbuzz tool is used to reverse engineer
a proprietary NATO Link-1 network protocol allowing to inject
rogue airplane tracks into air operations command and control
system.

Index Terms—computer network operations, remote fuzzing,
network security, network protocol reverse engineering, cyber
red teaming

I. INTRODUCTION

When performing a thorough unknown target information
system vulnerability test, i.e., a red teaming engagement [1],
there are cases when critical network communication protocols
need to be targeted and assessed in a limited period of time.
In this paper, the term binary protocol means any computer
network communication protocol consisting of multiple bit
groups (i.e., bit-fields) of various length, not always being
aligned to the size of one byte. When testing either a known
protocol, such as IPv6, or a proprietary one, such as Link-
1 [2], proper tools are required to allow testing or reverse
engineering with minimum effort.

Fuzzing or fuzz-testing is an integral part of secure software
development life-cycle (SDL) [3], creating a process to allow
developers build more secure software. Most common open-
source fuzzing tools and frameworks used by penetration
testers are bundled in such GNU/Linux penetration testing
distributions as Kali Linux [4] and Black Arch Linux [5].
Majority of tools are web application oriented, with some
being general purpose frameworks, and only few of them
developed exclusively for network protocol fuzzing. Out of
those, most tools aim at application layer protocols (e.g.,
FTP, HTTP, SSH), but are not concerned with the underlying
transport and Internet layers, which are critical to ensure cor-
rect communications. Fuzzing of lower layer protocols would

address the critical security issues of the TCP/IP protocol stack
implementation in operating system kernel. In assessed tools,
a typical test-case definition expects one byte as a minimum
amount of data and are not concerned about individual bits
and non-byte aligned groups of bits. Unfortunately, a number
of widely used protocols support the field sizes of various
bit lengths. For example, IPv6 header Flow Label field is 20
bits long and cannot be byte-aligned to maintain the protocol
specification. Furthermore, these tools are not applicable for
unknown or proprietary network protocols. Proposed Bbuzz
tool uses one bit as the smallest unit and can operate starting
from Layer-2 network frames. Thus, providing features for
flexible test-case creation, whilst striving to ensure a balanced
simplicity of use. The implemented functionality allows to
use Bbuzz for quick assessment of any protocol, its features,
information carried within, automatic creation of the initial
test-case, and conduct fully automated fuzzing.

This paper addresses the identified drawbacks in open-
source tools for network protocol fuzzing and reverse engi-
neering, and provides the following contributions:

1) simple and systematic approach for protocol reverse
engineering (described in Section III); implemented in

2) Bbuzz tool – open-source bit-aware network protocol
fuzzing framework.

In this paper the Bbuzz tool is used for analyzing network
protocols and real case study is presented, Section II gives an
overview of related work; Section III explains the systematic
approach and describes Bbuzz core concepts; Section IV
covers a case study of Link-1 protocol reverse engineering;
Section V concludes this paper.

II. RELATED WORK

Closed source proprietary solutions (e.g., Codenomicon
Defensics) tend to be expensive, and in most cases not
feasible for short black-box penetration testing or ad-hoc red
teaming engagements. In such cases, open-source solutions are
explored and adapted to meet the testing requirements [6]. No
closed source tools were assessed since no trial versions were
made available or provided upon authors request.

2



Tools, such as SNOOZE by Banks et.al. [7], AutoFuzz by
Gorbunov et.al. [8], RFSM by Zhao et.al. [9], and T-Fuzz by
Johansson et.al. [10] are either designed for application layer
network protocol stateful fuzzing or applicable for specific
protocols (e.g., LTE, ZigBee), and no public source code was
identified. The research paper of T-Fuzz tool hints, that it
supports variable bit length test-case specification, however,
it is specifically designed as an extension to a proprietary
framework to perform telecommunication protocol testing.

SPIKE fuzzing framework [11] is a discontinued solution
developed by ImmunitySec. Even though forked SPIKE in-
stances exist, it was disregarded because of lacking support,
required steep learning curve and significant time investment
to start developing SPIKE-based test-cases.

Sulley [12] is a fuzzing framework written in Python, and
implements the core concepts of SPIKE. It provides rich fea-
tures in data generation, monitoring of target system network,
process and state activity, and tracking the detected faults.
Despite being feature rich, it is not well maintained and has
majority of bugs. For network protocol fuzzing, the test-case
specifications are automatically byte-aligned by prepending
zeroes to reach one byte. Such forced byte-alignment does
not allow a required depth of granularity for network protocol
testing.

Boofuzz [13] is a fork and successor of Sulley. Besides
having an active development, feature addition and code main-
tenance, it still inherits the same core development principles
of Sulley and automatically performs byte alignment of bit
fields. This issue [14] was submitted by us and acknowledged
by the developer for feature addition. However, up to this date,
it is still open and not implemented.

Peach Community Edition [15] is a general purpose fuzzing
framework providing diverse feature set and systematic ap-
proach to describing and performing testing. Peach allows to
define the data and state model, implements monitoring agents
and various testing engine strategies and configurations. Due
to these features, it is well acknowledged and used by the
software vulnerability researcher community [16]. Data and
state models are described in XML formatted configuration
files (i.e., Pit files). Defining them is a tedious task involving
deep in advance knowledge of the target under test. Such
knowledge, in most cases, is not available when starting with
unknown network protocol analysis, testing or reverse engi-
neering. Furthermore, community edition has lengthy release
cycles and infrequent bug fixes, and is lacking features which
are implemented exclusively in the commercial edition. When
evaluating Peach applicability to IPv6 testing, it was identified,
that Pit files are already available for that [17], however,
configuration was limited only to connectivity information
(e.g., IPv6 and MAC addresses, ports and network interface).
Besides that, it was not identified that Peach would support the
variable bit-field test-case specification. Peach, being a general
purpose solution, tries to cover file-based application as well
as network protocol testing.

Other network protocol testing tools, bundled in Kali Linux
and Black Arch penetration testing GNU/Linux distributions,

such as Taof [18] and Zzuf [19], exist, however, they are
limited to known application layer protocols and do not allow
bit-field based protocol specification and testing. Also, file-
based fuzzing solutions, such as American fuzzy lop [20],
were considered to generate network packet mutations to be
wrapped for delivery over network. This is not feasible when
further payload mutations are required based on the received
replies form the system under test.

To address the identified drawbacks of assessed fuzzing
solutions, Bbuzz: uses one bit as the minimum size of data
insetad of one byte; is protocol independent and can be used
to test any network protocol at any layer instead of being
limited to a particular protocol or layer; grants flexibility to
configure all communications options, if deemed necessary,
instead of few fixed ones; provides functionality to aid fast
protocol initial assessment and test-case definition without
requiring huge time investment; has a clear and strightforward
test-case syntax without the need to create complex ones; and
is publicly available on GitHub.

III. CORE CONCEPTS AND IMPLEMENTATION

Developed Bbuzz tool prototype is written in Python 3,
using standard libraries, and is released publicly under the
MIT license at https://github.com/ lockout/bbuzz.

Bbuzz aims to bring a simple and systematic work-flow in
subsequent steps: obtaining communication sample, defining
the base connection layer, describing the payload, performing
the payload mutations, executing the fuzzing, and conducting
logging, monitoring and tracking the state of the system un-
der test. Systematic work-flow, implemented in Bbuzz object
classes, is described in the following sub-sections. The analyst
can interact with all separate object classes either via a Python
script, Python interactive sell, or a system shell (e.g., iPython).

A. Sample Acquisition

Protocol analysis starts either by referring to specification
(e.g., IETF RFC) or by capturing traffic samples with a
network packet sniffer (e.g., tcpdump or Wireshark). Packet
capture gives the required starting information, such as TCP/IP
protocol stack layer, payload properties, and delivery method
(e.g., unicast, multicast, broadcast). For known protocols, this
provides the information about the use and implementation,
and in case of unknown – raw data for further analysis.
Depending on the complexity of the protocol, the analyst
can perform visual analysis of the sample, use the analysis
functionality of the network packet capture tools, and use the
Bbuzz built-in analysis functionality.

Bbuzz helper tool, written in Python Scapy framework,
is used to listen on the network traffic and capture the
packets matching the defined filter criteria. Captured packets
are converted into their binary representation and written to
a file. Bbuzz function analyze payload() parses this capture
file and identifies the bit-field patterns which are static (i.e.,
immutable) among all, and the ones which change (i.e.,
mutable). This allows to quickly perform pattern matching
and identify a possible initial test-case. With this step, the

3

https://github.com/lockout/bbuzz


usage and principal properties of the protocol are identified to
continue further analysis. For example, suppose a capture file
contains the following data:

11100101101011111001101011100110
11100101101011111100100010000110
11100101101011101001101101100110
11100101101011100010011010000110

Bbuzz payload analysis generates the following output,
representing mutable and immutable bit groups to quickly
assess the communication protocol and identify the starting
test case:

(’111001011010111’, immutable, 15)
(’110011010111’, mutable, 12)
(’00110’, immutable, 5)

To speed up the analysis and reverse engineering process
of an unknown protocol, the Bbuzz tool calculates Shannon
entropy for the whole payload and per each of the identified
bit-fields. This unique functionality helps to quickly pinpoint
the properties of the payload and its fields, revealing the likely
type of information contained therein. For example, ASCII
characters having the entropy of around 4.6 and compressed
or encrypted data – 7.9 Shannon.

The approach in the case study uses strict filtering of
captured packets based on criteria, such as source IP address,
destination port, transport protocol, and payload size. This
creates uniform packet capture without any noise. For Link-1
communications it is possible to use explicit filtering. There
are cases where such filtering is not possible and resulting
data-set would contain noise. For mining strong patterns from
data-sets with noise, frequent itemset mining (FIM) algorithms
have been often suggested [21] [22]. Nevertheless, the use
of well-known FIM algorithms, such as Apriori, for packet
payload data is complicated for several reasons. Firstly, these
algorithms detect unordered groups of items, while reporting
the offset of bits in packet payloads is essential for meaningful
bit patterns (i.e., reporting a frequent itemset {0,1} is not
helpful for the end user). Secondly, bit patterns can be quite
long (e.g., consisting of hundreds of bits), but mining long
patterns from large data sets is known to be computationally
expensive [23]. A FIM algorithm called LogHound [23] has
been designed for encoding positional information into items
(bits) and mining long patterns from larger data sets. During
the experiments, we have used LogHound with higher support
thresholds (e.g., 80-95%) for filtering out occasional noise and
detecting bit patterns which are present in majority of packets.

B. Establishing Basic Network Connectivity

Basic network connectivity is handled by a Bbuzz Protocol
class to describe and create the base protocol layer, which
is required to send data over the network and meet the
requirements of the test. The specified initial base protocol
layer allows the testing of further upper layers, those treated as
payload to be described as a test-case of a Bbuzz Payload class.
Bbuzz Protocol class accepts the base layer to be specified

either as “raw2” for Layer-2 connections (e.g., IPv4 or IPv6
testing), “raw3” for Layer-3 connections (e.g., TCP or UDP
testing), and “raw4” to specify the Layer-4 connections (e.g.,
FTP and Link-1 testing). For example, base connection layer
“raw2” establishes a Layer-2 connectivity allowing testing of
upper layer protocols, such as IPv4 or IPv6. This flexibility
allows to create and run test cases without the need to define
complex protocol classes and test-cases.

To define the base protocol layer, Bbuzz uses the syntax
as presented in example Fig.1, and takes two parameters.
The first parameter specifies the initial base layer connec-
tion, and the second one is a Python dictionary providing
the configuration parameters for that specific layer. Layer-2
connection options require the destination MAC address (DES-
TINATION MAC) and Ethernet frame type (ETHER TYPE).
Optionally, source MAC address (SOURCE MAC) can be
specified. The ETHER TYPE option can be used to pro-
vide additional information besides such types as IPv6
(0x86DD) or IPv4 (0x0800), but also, for example, to in-
clude IEEE 802.1Q VLAN tagging data (e.g., VLAN tag
0x810000010800). Layer-3 connection options require the
destination IP address (DESTINATION IP) and IP version
(IP VERSION). Optionally, source IP address (SOURCE IP),
SOURCE MAC and DESTINATION MAC values are ac-
cepted. Layer-4 connection options should include the re-
quired ones of the “raw3” accompanied by protocol number
(PROTO NUMBER), for example TCP (SOCK STREAM
= 0x01) or UDP (SOCK DGRAM = 0x02), and destina-
tion port (DESTINATION PORT). Additionally, source port
(SOURCE PORT) and connection specific parameters can be
set, such as configuring the network interface as broadcast
by specifying the BROADCAST option. Finally, the network
interface identifier (e.g., eth0, enp0s25) should be provided for
binding and sending data.

Fig. 1. Example of Link-1 broadcast base Layer-4 creation

interface = "enp0s25"
proto = bbuzz.protocol.Protocol(

’raw4’,
{

"SOURCE_IP": "10.78.2.169",
"DESTINATION_IP": "10.78.2.255",
"PROTO": 0x02,
"DESTINATION_PORT" : 1229,
"BROADCAST": True
}

)
proto.create(interface)

C. Describing Protocol Fields

Description of various protocol fields is handled by the
Bbuzz Payload class to provide a structured approach to pay-
load description for a test-case. Bbuzz Protocol class accepts
values in different formats to ease the definition of test-cases
according to data format. Payload field specifications can be
added or loaded from a file to an instantiated Payload class
object, therefore providing clear structure and flexibility for
test-case definition.

4



To define the payload, Bbuzz uses syntax as presented in
example Fig.2, and accepts two parameters. The first parameter
represents the initial value of the data field, and the second one
is a Python dictionary describing the data field and providing
specific settings for mutation strategies. The value or values,
in case of set of fixed known values, of the data field, can
either be selected from the captured network traffic, speci-
fied according to the protocol specification, or any arbitrary
value if it is chosen by the analyst. Payload field options
require the following attributes: data format (FORMAT), field
type (TYPE), field length in bits (LENGTH), data group
(GROUP), and field mutation state (FUZZABLE). FORMAT
specifies in what format the data is represented, such as
binary, hexadecimal, decimal, octal, string, or bytes values.
This eases the test-case definition with the values either from
the protocol specification or from packet capture. Based on
the format specified, the appropriate data conversion to bits
will be chosen by the engine. TYPE indicates what data this
field represents, and supports the following types for binary,
numeric, string, delimiter, or static data. Based on the data
type, the field mutation strategy will be chosen to generate
sets of mutated values. LENGTH is the length of field in bits
and, when performing the mutations, the size will be aligned
to the defined one by the mutation engine. LENGTH set to
‘-1’ represents a variable length field for which mutations
of variable length would be produced. This is beneficial for
tests of memory buffer overflow conditions. If no length is
specified, it is calculated by the Payload class based on the
length and type of the presented data. GROUP is a boolean
value and when set to True, designates that the data value is
a tuple, i.e., a set of comma separated fixed values. This can
be used in case of known set of immutable values applicable
for a particular field of the payload, for example, a set of
Next Header values for IPv6 header. Specifying groups of
values minimizes the time needed for testing, and ensures
a better code coverage. If not provided, default GROUP
value is set to False. FUZZABLE is a boolean parameter
to represent either the data is mutable (True) or immutable
(False). Additionally, Payload class calculates and assigns an
unique identifier (HASH) to every field specified. This is
used by some Bbuzz mutation functions to keep track of the
mutation state for that particular field.

Fig. 2. Example of IPv6 header Flow Label assignment

load = bbuzz.payload.Payload()
load.add(’0’,

{
"FORMAT": "bin",
"TYPE": "binary",
"LENGTH": 20,
"FUZZABLE": True
}

)

D. Payload Mutation Engine

Described payload mutations are handled by Bbuzz Mutate
class to generate mutations for the particular payload field

based on specified options. This class converts all the specified
data values to binary, orchestrates the mutation process, selects
appropriate mutation engine for the particular data type, and
produces a mutated payload instance for network transmission.

Bbuzz mutation class is instantiated by mutagen =
bbuzz.mutate.Mutate(load) and accepts two parameters. The
first mandatory parameter presents the defined Payload class
object, and a second optional parameter presents Python dic-
tionary to configure the mutation process. Currently, Mutation
class provides two main strategies – generating known bad
values including ones introduced by coding mistakes for the
particular data type, and pseudo random value generation.
A third – genetic mutation strategy, will be implemented in
upcoming release, in order to precede or obsolete random
generation. This approach would produce further mutations
for the generated valid payload instances able to solicit a
reply from the system under test. The mutation strategies
have the goal to attempt to minimize the required time to
get testing results and generate a more sensible test-cases. It
is not feasible to brute-force, i.e., produce all of the possible
mutations for data fields, since that would yield too large set of
mutations, be slow and consume huge amounts of computing
resources.

Mutation concepts and common coding mistakes (e.g., off-
by-one), allowing to trigger software exceptions and vulner-
abilities, were identified from [16] [24] [13] to be further
adapted and implemented. The mutation engine generates
finite amount of mutations out of known bad values according
to the specified data type. Binary mutation engine performs
bit-wise operations (e.g., inversions, endianess change), bit-
shifting (e.g., binary shift right with prepending ‘1’ from
left), and pattern insertion. For example, few sample mutations
for a bit-field with value of ‘00110’ are bit-flip: (11001),
endianess swap: (01100) and bit-shift-right values: (10011,
11001, 11100, 11110, 11111). Numeric mutation engine cre-
ates mutations based on mathematical coding mistakes, such as
turning the value into a two’s complement negative, deducting
or adding 1 to the value to trigger off-by-one errors. For
example, few mutations for initial value of ‘00110’ are two’s
complement negative: (11010), addition of ‘1’: (00111), and
substracting ‘1’: (00101). Delimiter mutation engine performs
substitution with other known delimiter values or commonly
misplaced characters. For example, replacing delimiter ‘;’
(111011) with characters like ‘,’ (101100) or ‘:’ (111010).
String mutation engine performs string encoding modifica-
tions, such as encoding the string into UTF-8, UTF-7, or,
if enabled – increasing length to trigger buffer overflows.
Static defined data fields do not produce any mutations and
are treated as immutable. Random mutation engine is started,
unless explicitly disabled, by the Mutation class once the
generated known value mutation instances have depleted. For
all mutation engines, where random values are generated, the
seed is constant, unless changed, to ensure that test-cases are
reproducible.

Instead of immediately generating the mutation stack con-
taining all possible mutations, a Python generator is used to

5



produce the next mutation instance upon request, in a fast
and memory efficient manner. Mutation generator produces n-
fold Cartesian product of all available payload field mutation
sets. Meaning, that all possible payload combinations from
individual field mutation sets are generated in order to grant
the most complete test-case set. In essence, if F1 is the
protocol first field with all generated mutation set A, and F2
is the second field with all generated mutation set B, then the
Cartesian product would be calculated as follows:

A×B = {(a, b) | a ∈ A, b ∈ B}

if : A = {000, 010, 110, 100}, B = {11111, 00000}

then : A×B = {(000, 11111), (000, 00000), (010, 11111),

(010, 00000), (110, 11111), (110, 00000), (100, 11111),

(100, 00000)}

E. Target Monitoring and Test Execution Logging

Monitoring the system under test and performing the log-
ging of the fuzzing execution is handled by Bbuzz Monitoring
class. Logging component provides the back-trace of the
fuzzing process to identify which packet or a sequence of
packets triggered unexpected behavior or a crash condition.
Monitoring component performs tracking of the state of the
target system, gathering status information (e.g., system alive
state or crash dumps). As well as receiving and tracking the
responses from the target system, where applicable, to allow a
more intelligent approach to fuzzing process and state machine
development.

Components of this class already implemented is the
time-stamped logging of the sent packets and a rudi-
mentary approach to tracking the alive status of the
target system via ICMP. Further developments are de-
scribed in section V. To instantiate Monitoring class, it
takes an IP address of the system under test – mon =
bbuzz.monitor.Monitor(ip=”10.0.244.191”).

F. Fuzzing Management

The management of the fuzzing is performed by Bbuzz Fuzz
class, which involves actions such as next mutation retrieval
from mutation engine, mutated instance delivery over the
established network socket, control the timing of the packet
sending, logging the sent test-cases with the response from the
target system, and managing the process based on the target
monitoring metrics. To instantiate the Fuzzer class, it takes
the defined Protocol, Mutate and Monitor objects – fuzzer =
bbuzz.fuzz.Fuzz(proto, mutagen, mon).

The fuzzing process is started with fuzzer.start(timing=0.5).
This instantiates the base protocol layer for communication
establishment, takes next payload mutation, and sends over
the network socket. While the fuzzing is ongoing, the Fuzzer
class uses Monitoring class functionality to record the sent
mutations, their time-stamp, and if possible – the response
and state of the target system.

IV. CASE STUDY

Case study describes a red teaming engagement at NATO’s
largest technical cyber-defense exercise Locked Shields 2017
[25]. The scope of engagement was to verify the integrity
of air command and control (C2) system communications.
The desired effect was to present a large amount of fake
unidentified aircraft tracks (i.e., volatile data representing an
airplane instance at a particular moment in time), and have
an impact on the situation awareness and decision making
process.

The exercise network, consisting of multiple sub-nets, de-
ployed the NATO air C2 systems in one of the subnets, con-
sisting of ICC (Integrated C2) workstations and NIRIS (Net-
worked Interoperable Real-time Information Services) radar
instance. NIRIS is a MS Windows Server 2008 R2 with related
software and services required to receive the information from
the radar and broadcast this information on the local sub-net
for engaged systems, such as ICC client. MS Windows 7 client
with ICC client software listens to network broadcast traffic
on a defined port and represents the received air tracks and
details on the world map. These UDP-based network broadcast
communications use Link-1 protocol wrapped in particular
NIRIS format. Link-1 protocol, according to its specification,
is a proprietary protocol containing groups of variable length
bit fields, where each field represents a particular property of
an air track (e.g., coordinates, altitude, bearing, flight number).
Exercise deployment of air C2 systems were implemented
as close as possible to represent real instances, and the
cyber defense of these systems was assumed by the exercise
participants (i.e., blue teams).

To complete this objective, with not too much informa-
tion available, red team (RT) approached it as a black-box
engagement. Before the start of the exercise, RT was granted
access to the exercise network and air C2 component instances
therein to allow attack approach assessment and development.
The radar system was broadcasting legitimate air tracks on
the network, received and displayed on the map by the ICC
client instances. RT was able to capture this traffic to start
the initial assessment, perform protocol reverse engineering
and attempt to broadcast fake air tracks to be plotted on
map. The Bbuzz protocol assessment capabilities allowed to
quickly identify mutable and immutable bit fields of the Link-
1 protocol, which allowed to start the test-case creation. It was
assumed, that such properties as aircraft identification number
and IFF (Identify Friend or Foe) status should not be changing
for the same aircraft, therefore being treated as immutable, and
properties, such as coordinates, velocity and altitude should be
changing and therefore assumed as mutable. With this limited
knowledge the fuzzing case was created and protocol fields
mutated in order to produce observable results, which allowed
to identify usage of a particular bit fields in Link-1 protocol.
The aim was, in the limited amount of time, to identify only
appropriate fields which are relevant for the attack, those
being, aircraft number, coordinates, bearing, velocity and IFF
status.

6



With the minimum Link-1 implementation information
available, the red team used Bbuzz tool to successfuly identify
critical parts of protocol in one day and further reverse
engineer them. This enabled broadcasting fake air tracks to be
displayed on the radar screens of the defending blue teams. In
addition, for this attack to be successful, RT had to gain local
area network access via other means such as spear-phishing
campaign (e.g., e-mails containing malicious attachments or
URL links), taking control over the firewalls (e.g., misconfig-
uration), and exploiting vulnerabilities in the publicly facing
services (e.g., e-mail and web servers). Such attack represents
a significant impact to real situation awareness, air operation
decision making and overloading the air traffic control for
handling and routing the fake traffic.

V. CONCLUSIONS AND FUTURE WORK

In this paper a systematic approach to network protocol
fuzzing and reverse engineering is discussed, with a Bbuzz
tool prototype implementation described and its applicability
in real use cases for red team engagements.

Planned Bbuzz updates involve research and development
for system under test state information gathering, crash log col-
lection, genetic payload mutation based on received responses,
and target system management. For target system monitoring,
approaches, not impacting the state of the system and able
to extract information (e.g., core dumps, daemon or service
logs, network traces), should be considered. Methods, such as
remote probing, agent deployment, or virtual machine (VM)
hypervisor management are applicable with their benefits (e.g.,
hypervisor level data collection) and implicit drawbacks (e.g.,
using TCP/IP stack under test also for monitoring purposes).
Virtualized environments provide scalability and effectiveness
of the target system deployment and management (e.g., snap-
shots, crash state recovery). However, for fuzzing purposes,
possibility to interact with the target system via a wrapper or
an API should be available. Virtualization platforms, such as
VMWare Workstation or SUN VirtualBox, can be considered,
both having their strengths and limitations (e.g., limited to VM
deployment and management, not allowing interaction with
the system itself). Kernel-based virtualization (e.g., KVM,
QEMU) are well integrated with GNU/Linux and have API
libraries (e.g., libvirt) for most programming languages. How-
ever, the extent of the interaction with the target system is not
yet researched by the authors. Micro-virtualization solutions
(e.g., Docker) allow running core required components, instead
of allocating resources to fully featured VM. Nevertheless, this
approach requires a deeper understanding if it is enough to
conduct a reliable test, and the level of interaction provides
valuable information of the target system state.

Future work includes research on the Bbuzz development,
and usage for finding vulnerabilities in TCP/IP protocol stack
implementation in embedded operating system kernels.

VI. ACKNOWLEDGMENTS

The authors thank Olaf M. Maennel (TUT) and Raimo
Peterson (NATO CCD CoE) for supporting this work.

REFERENCES

[1] P. Brangetto, E. Çalişkan, and H. Rõigas, “Cyber Red Teaming -
Organisational, technical and legal implications in a military context,”
tech. rep., NATO CCD CoE, 2015.

[2] NATO Standartization Agency, “STANAG 5501, Tactical Data Exchange
- Link 1 (Point-to-Point), Ed.7,” standartization agreement, North At-
lantic Treaty Organization, 2015.

[3] “Microsoft SDL.” https://www.microsoft.com/en-us/sdl/. Accessed:
27/03/2017.

[4] “Kali Linux Tools.” http://tools.kali.org/tools-listing. Accessed:
28/03/2017.

[5] “Black Arch Linux Fuzzers.” https://blackarch.org/fuzzer.html. Ac-
cessed: 28/03/2017.

[6] S. D. Zhang and L. Y. Zhang, “Vulnerability mining for network
protocols based on fuzzing,” in The 2014 2nd International Conference
on Systems and Informatics (ICSAI 2014), pp. 644–648, November 2014.

[7] G. Banks, M. Cova, V. Felmetsger, K. Almeroth, R. Kemmerer, and
G. Vigna, SNOOZE: Toward a Stateful NetwOrk prOtocol fuzZEr,
pp. 343–358. Berlin, Heidelberg: Springer Berlin Heidelberg, 2006.

[8] S. Gorbunov and A. Rosenbloom, “AutoFuzz: Automated Network Pro-
tocol Fuzzing Framework,” nternational Journal of Computer Science
and Network Security, vol. 10, pp. 239–245, August 2010.

[9] J. Zhao, S. Chen, S. Liang, B. Cui, and X. Song, “Rfsm-fuzzing a smart
fuzzing algorithm based on regression fsm,” in 2013 Eighth International
Conference on P2P, Parallel, Grid, Cloud and Internet Computing,
pp. 380–386, October 2013.

[10] W. Johansson, M. Svensson, U. E. Larson, M. Almgren, and V. Gulisano,
“T-fuzz: Model-based fuzzing for robustness testing of telecommuni-
cation protocols,” in 2014 IEEE Seventh International Conference on
Software Testing, Verification and Validation, pp. 323–332, March 2014.

[11] “The Advantages of Block-Based Protocol Analysis for Secu-
rity Testing.” http://www.immunitysec.com/downloads/advantages of
block based analysis.html. Accessed: 30/03/2017.

[12] “Sulley fuzzing framework.” https://github.com/OpenRCE/sulley. Ac-
cessed: 29/03/2017.

[13] “boofuzz: Network Protocol Fuzzing for Humans.” https://github.com/
jtpereyda/boofuzz. Accessed: 29/03/2017.

[14] “Fuzz a bitfield of various fixed bit sizes #88.” https://github.com/
jtpereyda/boofuzz/issues/88. Accessed: 29/03/2017.

[15] “Peach Community Edition.” http://www.peachfuzzer.com/resources/
peachcommunity/. Accessed: 28/03/2017.

[16] D. egaldo et.al., Gray Hat Hacking: The Ethical Hacker’s Handbook,
ch. 5, pp. 117 – 142. McGraw-Hill Education, 4 ed., January 2015.

[17] “IPv6 Peach Pit Data Sheet.” http://www.peachfuzzer.com/wp-content/
uploads/IPv6.pdf. Accessed: 29/03/2017.

[18] “Taof - The art of fuzzing.” https://sourceforge.net/projects/taof/. Ac-
cessed: 29/03/2017.

[19] “Zzuf - Multi-Purpose Fuzzer.” http://caca.zoy.org/wiki/zzuf. Accessed:
29/03/2017.

[20] “American fuzzy lop.” http://lcamtuf.coredump.cx/afl/. Accessed:
29/03/2017.

[21] Q. Zheng, K. Xu, W. Lv, and S. Ma, “Intelligent Search of Correlated
Alarms from Database Containing Noise Data,” in 2002 IEEE/IFIP
Network Operations and Management Symposium, pp. 405–419, 2002.

[22] D. Brauckhoff, X. Dimitropoulos, A. Wagner, and K. Salamatian,
“Anomaly Extraction in Backbone Networks using Association Rules,”
in 2009 ACM SIGCOMM Internet Measurement Conference, pp. 28–34,
2009.

[23] R. Vaarandi, “A Breadth-First Algorithm for Mining Frequent Patterns
from Event Logs,” in 2004 IFIP International Conference on Intelligence
in Communication Systems, vol. 3283, pp. 293–308, LNCS, 2004.

[24] N. Rathaus and G. Evron, Open Source Fuzzing Tools. Syngress
Publishing, December 2007.

[25] “Locked Shields 2017.” https://ccdcoe.org/largest-international-
technical-cyber-defence-exercise-world-takes-place-next-week.html.
Accessed: 20/04/2017.

7

https://www.microsoft.com/en-us/sdl/
http://tools.kali.org/tools-listing
https://blackarch.org/fuzzer.html
http://www.immunitysec.com/downloads/advantages_of_block_based_analysis.html
http://www.immunitysec.com/downloads/advantages_of_block_based_analysis.html
https://github.com/OpenRCE/sulley
https://github.com/jtpereyda/boofuzz
https://github.com/jtpereyda/boofuzz
https://github.com/jtpereyda/boofuzz/issues/88
https://github.com/jtpereyda/boofuzz/issues/88
http://www.peachfuzzer.com/resources/peachcommunity/
http://www.peachfuzzer.com/resources/peachcommunity/
http://www.peachfuzzer.com/wp-content/uploads/IPv6.pdf
http://www.peachfuzzer.com/wp-content/uploads/IPv6.pdf
https://sourceforge.net/projects/taof/
http://caca.zoy.org/wiki/zzuf
http://lcamtuf.coredump.cx/afl/
https://ccdcoe.org/largest-international-technical-cyber-defence-exercise-world-takes-place-next-week.html
https://ccdcoe.org/largest-international-technical-cyber-defence-exercise-world-takes-place-next-week.html

	Introduction
	Related Work
	Core Concepts and Implementation
	Sample Acquisition
	Establishing Basic Network Connectivity
	Describing Protocol Fields
	Payload Mutation Engine
	Target Monitoring and Test Execution Logging
	Fuzzing Management

	Case Study
	Conclusions and Future Work
	Acknowledgments
	References

