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ABSTRACT 
During the last decade, intrusion detection 

systems (IDSs) have become a widely used measure 
for security management. However, these systems 
often generate many false positives and irrelevant 
alerts. In this paper, we propose a data mining 
based real-time method for distinguishing important 
network IDS alerts from frequently occurring false 
positives and events of low importance. Unlike 
conventional data mining based approaches, our 
method is fully automated and able to adjust to 
environment changes without a human intervention. 
 

INTRODUCTION 
During the last decade, intrusion detection 

systems (IDSs) have become a widely used measure 
for security and situation management. However, 
these systems are known to generate many alerts, 
with a considerable amount of them being either 
false positives or of low importance. This problem is 
especially common for network IDSs that monitor 
network segments for unwanted or malicious traffic. 
It is not unusual to receive thousands of alerts from a 
single network IDS sensor per day, with more than 
90% of the alerts being irrelevant [1, 2, 3]. This 
often prevents the security analyst from spotting and 
handling events that represent a real threat.  

 
Today, many network IDS vendors are using 

signature-based approach for identifying unwanted 
and malicious traffic – the IDS sensor is equipped 
with human-written signatures that describe bad 
network packets (e.g., a signature could contain a 
regular expression for matching the packet payload). 
Although it might seem tempting to eliminate 
irrelevant IDS alerts by tuning the vendor signatures 
for the local environment, this approach is often 
infeasible. First, signature development is a complex 
task that requires a lot of expertise and involves 
extensive testing in a sophisticated lab environment. 
However, most end users have neither such expertise 
nor testing resources. Second, several vendors don’t 
reveal the signature content to the end user, in order 

to protect the confidentiality of proprietary attack 
detection techniques. Third, most vendors are 
frequently releasing signature updates which may 
conflict with customer changes. Last but not least, in 
many cases the alert is irrelevant not because of a 
faulty signature, but rather because of the 
surrounding context. For example, a signature for 
detecting SNMP probes from external networks 
might also trigger IDS alerts on SNMP GET queries 
from ISP network management servers, although 
these are a routine monitoring activity. 

 
For the reasons above, false positives and other 

irrelevant IDS alerts can’t be avoided in most 
environments. In order to distinguish important IDS 
alerts from irrelevant events, IDS alert log analysis 
techniques are often used. Many approaches have 
been suggested for this purpose like machine 
learning [4], time series modeling [3, 5], the use of 
control charts [6], etc. During the last decade, data 
mining based methods have also been proposed in a 
number of research papers [1, 2, 7, 8, 9, 10, 11]. 
With these methods, IDS alert logs from the recent 
past are mined for knowledge that is used for the 
creation of event filtering and correlation rules for 
future IDS alerts. However, existing methods are 
inherently semi-automated – they assume that a 
human expert interprets detected knowledge and 
creates event filtering and correlation rules by hand. 

 
In this paper, we extend our previous research 

[11, 12] and propose a novel unsupervised data 
mining based approach for IDS alert classification. 
With this approach, knowledge is mined from IDS 
logs and processed in an automated way, in order to 
build an alert classifier. The classifier is then used in 
real-time for distinguishing important IDS alerts 
from frequently occurring false positives and events 
of low importance. The remainder of this paper is 
organized as follows: first, an overview of related 
work is provided; then, the algorithm for building 
the classifier is presented; the third section describes 
the classifier implementation and performance; the 
last section discusses open issues and future work. 



 

RELATED WORK 
Data mining methods were first used for 

knowledge discovery from telecommunication event 
logs more than a decade ago [13]. In the context of 
IDS alert log mining, a number of approaches have 
been suggested. Clifton and Gengo [7] have 
investigated the detection of frequent alert 
sequences, in order to use this knowledge for 
creating IDS alert filters. Long et al. [8] have 
suggested a supervised clustering algorithm for 
distinguishing Snort IDS true alerts from false 
positives. Julisch and Dacier [1] have proposed a 
conceptual clustering technique for IDS alert logs, 
so that clusters correspond to alert descriptions, and 
a human expert can use them for developing filtering 
and correlation rules for future IDS alerts. During 
their experiments, Julisch and Dacier found that 
these hand written rules reduced the number of alerts 
by an average of 75% [1]. This work was later 
extended by Julisch who reported the reduction of 
alerts by 87% [2]. Al-Mamory et al. [9, 10] have 
proposed clustering algorithms for finding 
generalized alarms which help the human analyst to 
write filters. During the experiments, the number of 
alarms decreased by 93% [9] and 74% [10].  
 

BUILDING THE ALERT CLASSIFIER 
In this section, we propose a frequent itemset 

mining based method for discovering knowledge 
from historical IDS alert logs and creating alert 
classifiers from this knowledge in an automated 
manner. Our method is motivated by the main 
drawback of previously proposed data mining 
approaches – a human expert has to analyze detected 
knowledge and manually create event filtering and 
correlation rules. Unfortunately, this is an expensive 
procedure that requires a lot of skill and that has to 
be performed regularly (e.g., on a monthly basis 
[2]), because the environment is changing 
constantly. For instance, signature database updates 
from vendors may introduce new alert messages to 
IDS alert logs. 

 
Our method is also motivated by the following 

observations. First, most alerts are triggered by only 
a few signatures. For example, when we inspected 
the logs of three IDS sensors of a large financial 
institution for the January-March 2009 time frame, 
we found that ten most prolific signatures produced 
85.6%, 86.2% and 96.2% of the alerts, respectively 
(each sensor had over 16,000 signatures deployed 
which triggered more than 300,000 alerts per 
month). Other researchers have observed the same 

phenomenon – e.g., in [3] it is reported that 68% of 
the alerts were produced by five signatures, while 
according to [5] seven signatures produced 77% of 
the alerts. Second, if a signature has triggered many 
alerts over longer periods of time, it is also likely to 
do so in the future. During our experiments, we 
identified twenty most prolific signatures for all days 
in the January-March 2009 time frame (90 days), 
using the logs of previously mentioned three IDS 
sensors. When we examined these 90 lists for each 
sensor, we found that 12, 10 and 11 signatures 
appeared in all lists, respectively. Taking into 
account these observations, we argue that in many 
environments a relatively small number of very 
frequent alert patterns can be found in IDS alert 
logs. Furthermore, these patterns describe the 
majority of alerts that will appear in the future. We 
also argue that since the patterns represent alerts that 
occur very frequently over longer periods of time, 
these alerts are well-known to security analysts who 
review IDS logs regularly. Due to their frequency 
and persistent nature, we call them routine alerts in 
the remainder of this paper. 

 
When we investigated routine alerts from 

previously mentioned three IDS sensors, we found 
that they are either false positives or events of low 
importance. One of the commonly occurring false 
positive alerts is triggered by network monitoring 
traffic coming from trusted sources (ISP network 
management servers). A prominent alert of low 
importance is related to MS Slammer Sapphire 
worm which infected many computers around the 
world in 2003. Despite vast majority of these 
computers were cleaned and patched, there are still 
infected nodes around that are constantly scanning 
the Internet for victims. Although this malicious 
network traffic triggers many alerts, they represent a 
very frequent and well-known attack that doesn’t 
pose a threat to properly maintained systems. 

 
We believe that the automated real-time 

identification of such routine alerts is important in 
many environments. First, it helps to save human 
effort that is spent for editing alert filters. Therefore, 
security analysts will have more time for reviewing 
alerts which don’t match routine alert patterns and 
thus deserve closer investigation. Second, since most 
IDS alerts are routine events, there will be much less 
alerts to investigate than in the original IDS log. In 
order to detect routine alert patterns, we employ 
frequent itemset mining which is a prominent data 
mining technique for finding regularities in various 
data sets [14], including event logs [12, 13]. From 



 

detected knowledge, an alert classifier is created for 
real-time processing of future alerts. Since network 
IDS sensors might be of various types and deployed 
in a wide range of environments (e.g., public 
networks, intranets or DMZs), they might produce 
very different outputs, therefore it often makes sense 
to apply our method for individual IDS sensors 
separately. For the sake of simplicity, we assume 
during the following discussion that the IDS alert 
log is produced by a single sensor.  

 
We model each alert A as a tuple A = (Atime, AID, 

Aproto, AsrcIP, AsrcPort, AdestIP, AdestPort), where the time 
attribute reflects the occurrence time of the alert, the 
ID attribute describes the ID of the signature that 
produced the alert, and the proto attribute identifies 
the network protocol for the traffic that triggered the 
alert. The srcIP, srcPort, destIP, and destPort 
attributes describe the source IP address, source port, 
destination IP address, and destination port of the 
traffic. If the protocol does not involve ports (e.g., 
ICMP), we use the constant “-“ for the srcPort and 
destPort attribute values. Figure 1 presents an 
example how we model Snort IDS alerts. 
 
Mar 31 00:12:23 2009 mysensor [auth.alert]  
snort[8903]: [1:1852:4] WEB-MISC robots.txt  
access [Classification: access to a potentially  
vulnerable web application] [Priority: 2]:  
{TCP} 10.219.73.73:36167 -> 192.168.10.2:80 
 
Mar 31 00:12:39 2009 mysensor [auth.alert]  
snort[8903]: [1:2003:12] SQL Worm propagation  
attempt [Classification: Misc Attack]  
[Priority: 2]:  
{UDP} 10.183.11.200:1298 -> 192.168.10.245:1434 
 
Mar 31 00:13:09 2009 mysensor [auth.alert]  
snort[8903]: [1:483:6] ICMP PING CyberKit 2.2  
Windows [Classification: Misc activity]  
[Priority: 3]:  
{ICMP} 10.16.16.146 -> 192.168.10.60 
 
 
(1238458343, 1:1852, TCP, 10.219.73.73, 36167,  
                          192.168.10.2, 80) 
(1238458359, 1:2003, UDP, 10.183.11.200, 1298,  
                          192.168.10.245, 1434) 
(1238458389, 1:483, ICMP, 10.16.16.146, -,  
                          192.168.10.60, -) 

 
Figure 1. Sample Snort IDS log messages with 

corresponding alert tuples 
 
If ���� is the set of all valid alerts that the IDS sensor 
can produce, the alert classifier is a function 
f: ���� � {0, 1}, where the function value 1 denotes 
“interesting” and 0 “routine”. IDS alert log L is the 
set of alerts that the IDS sensor has logged in the 
past. Given the time t and the time interval d, the log 
slice Lt,d is defined as follows: Lt,d = {A | A � L, 

t � Atime < t + d} (i.e., Lt,d contains all logged alerts 
from time t to t+d-1). 
 

Let I = {i1,...,in} be a set of items. If X � I, X is 
called an itemset. A transaction is a tuple (tid, X), 
where tid is a transaction identifier and X is an 
itemset. A transaction database D is a set of 
transactions, and the cover of an itemset X is the set 
of identifiers of transactions that contain X: 
cover(X) = {tid | (tid, Y) � D, X � Y}. The support 
of an itemset X is defined as the number of elements 
in its cover: supp(X) = |cover(X)|. If itemset X does 
not have any proper supersets with the same support 
(��Y, X � Y, supp(X) = supp(Y)), X is called a 
closed itemset. The frequent itemset mining problem 
is defined as follows [14] – given the transaction 
database D and the support threshold s, find all 
itemsets with the support s or higher (each such set 
is called a frequent itemset), and the supports of 
frequent itemsets. Instead of all frequent itemsets, 
we focus on mining closed frequent itemsets from 
IDS logs, since they are a compact and lossless 
representation of all frequent itemsets [15]. If D is a 
transaction database and s is a support threshold, 
Fclosed(D, s) denotes the set of closed frequent 
itemsets for D and s. 

 
In order to apply frequent itemset mining 

formalism to IDS alert log L, we order the alerts in L 
in the occurrence time ascending order (alerts with 
identical occurrence times can be ordered by other 
attributes). If A is the m-th alert from L, we can view 
it as a transaction (m, X), where X = {(AID,1), 
(Aproto,2), (AsrcIP,3), (AsrcPort,4), (AdestIP,5), (AdestPort,6)}. 
In other words, in order to distinguish identical 
values of different attributes, we order the relevant 
six attributes and store both the attribute value and 
number into each item. In that way, the IDS alert log 
L becomes a transaction database (we denote it by 
D(L)), and frequent itemset mining algorithms can 
be applied to this database. Detected closed frequent 
itemsets describe frequent alert patterns which not 
merely identify prolific signatures, but rather reveal 
strong associations between all types of attribute 
values. E.g., the itemset {(PHPBufferOverflow,1), 
(TCP,2), (10.1.1.1,5), (80,6)} indicates that the PHP 
buffer overflow attack is often attempted from 
various sources against the HTTP server running at 
the node 10.1.1.1. In the remainder of this paper, we 
use the terms pattern and itemset interchangeably. 
We also use the string notation for itemsets 
(patterns), where attribute values are extracted from 
items and written in the order of attributes; if there is 



 

no item for an attribute, asterisk (*) is written. For 
instance, the above itemset is denoted by 
PHPBufferOverflow TCP * * 10.1.1.1 80.  

 
If A = (Atime, AID, Aproto, AsrcIP, AsrcPort, AdestIP, 

AdestPort) is an alert and P is a pattern, we say that A 
matches P if P � {(AID,1), (Aproto,2), (AsrcIP,3), 
(AsrcPort,4), (AdestIP,5), (AdestPort,6)}. For example, the 
alert (100, DNSprobe, UDP, 10.1.1.1, 3761, 
10.1.1.2, 53) matches the pattern DNSprobe UDP * 
* * 53, but not the pattern DNSprobe UDP * * 
10.1.1.3 53. If P is a pattern and there exists a valid 
signature ID id, so that (id,1) � P, we say that P has 
the ID attribute. For other attributes � � {proto, 
srcIP, srcPort, destIP, destPort}, we define P has 
the � attribute in a similar fashion. 

 
During our previous research, we have 

developed a data mining tool LogHound that 
implements an efficient frequent itemset mining 
algorithm for event log data sets [12]. LogHound 
can be configured to store both the attribute name 
and value into items and is thus suitable for mining 
patterns from IDS alert logs according to our model. 
Figure 2 depicts sample Snort IDS alert patterns that 
have been detected with LogHound. 
 
# VNC horizontal port scan from 10.22.50.53 
1:2002911 TCP 10.22.50.53 * * 5900 
Support: 20 
 
# SQL Worm propagation attempt 
1:2003 UDP * * * 1434 
Support: 98 
 
# bad TCP traffic to 192.168.19.20:80 
* TCP * * 192.168.19.20 80 
Support: 137 
 
# Cyberkit ping from 10.16.16.1 to 192.168.10.60 
1:483 ICMP 10.16.16.1 - 192.168.10.60 - 
Support: 288 

 
Figure 2. Sample alert patterns detected with LogHound 

 
With traditional IDS log mining systems, human 
experts would use the knowledge depicted in Figure 
2 for writing event filtering and correlation rules. At 
first glance, it might seem tempting to automate this 
procedure in a straightforward manner and define 
the alert classifier in the following way (L is the IDS 
alert log and s is the support threshold): 
 
f(A) = 0, if �X � Fclosed(D(L), s), A matches X;  

1, otherwise 
 

In other words, the classifier labels the alert as 
“interesting” if it does not match any of the closed 

frequent patterns, otherwise the alert is labeled as 
“routine”. However, the above method for building 
the classifier has several drawbacks. First, an 
intensive attack might trigger many IDS alerts and 
create frequent patterns, although the attack itself 
could only last for a short time. If a similar attack 
occurs in the future, the classifier will mistakenly 
label attack alerts as “routine”, although they are 
highly interesting. Second, some patterns from 
Fclosed(D(L), s) are too generic. For example, the 
third pattern in Figure 2 implies that all alerts 
regarding the target “HTTP server at the node 
192.168.19.20” will be classified as “routine”. 

 
For the reasons above, we propose another 

algorithm for building the classifier that considers 
IDS alerts from a time window ts…te. The algorithm 
divides these alerts into n slices, with each slice 
covering a time frame of the same size (e.g., 1 hour). 
After that, closed frequent patterns are mined from 
each slice. For building the classifier, only these 
patterns are considered which were detected for k or 
more slices, and which have the ID attribute. If the 
time window ts…te covers a sufficiently large time 
frame from the recent past (e.g., 4 weeks), and the 
number of slices n and threshold k are large enough 
(e.g., there are 672 slices of 1 hour with a threshold 
of 336), the algorithm will detect only these patterns 
that correspond to routine alerts. Figure 3 provides a 
detailed description of the algorithm.  
 
Input: 
ts – the beginning of the time window  
te – the end of the time window 
n – the number of slices 
k – the pattern relevance threshold (1 � k � n) 
s – the support threshold 
 
Output:  
the definition of the alert classifier f: � � {0, 1} 
 
1. d := (te – ts) / n  
2. For each i in {0,..., n-1}   Fi+1 := Fclosed(D(Lts+i*d,d), s)   
3. F := F1 � F2 � … � Fn   
4. For each P in F   countP := |{Fj | 1 � j � n, P � Fj}|   
5. FC := {P | P � F, countP � k, P has the ID attribute}   
6. Return the following definition of the alert classifier: 
 
f(A) = 0, if �X � FC, A matches X; 

1, otherwise 
 

Figure 3. An algorithm for building the alert classifier 
 
The algorithm has several important properties. 
First, it does not require any human intervention. 



 

Second, it can be used for rebuilding the classifier 
after certain time periods (e.g., once a day), in order 
to make the classifier adaptable to environment 
changes. Third, the algorithm is not sensitive to a 
short-term noise, since only those patterns are used 
for classifying alerts which appear frequently in 
many time frames over longer periods of time.  
 

However, although the algorithm removes 
patterns without the ID attribute from further 
consideration, it is still susceptible to over-
generalization with respect to other attributes (in 
IDS alert mining context, this problem has also been 
identified in [1]). For example, suppose that the IDS 
sensor has a signature for detecting SNMP GET 
requests, and the application server 10.1.1.1 
normally receives SNMP GET queries only from 
two monitoring servers 192.168.1.1 and 192.168.1.2. 
If patterns SNMPGet UDP 192.168.1.1 * 10.1.1.1 
161 and SNMPGet UDP 192.168.1.2 * 10.1.1.1 161 
appear in the set FC, then FC could also contain 
SNMPGet UDP * * 10.1.1.1 161 (because its 
support can’t be smaller than the sum of supports of 
the first two patterns). Unfortunately, the latter 
pattern is too generic, since it classifies SNMP GET 
request alerts for all source nodes as “routine”, 
although requests from other nodes than 192.168.1.1 
and 192.168.1.2 are unusual. 

 
In order to address this problem, we augment the 

classifier building algorithm in the following way. 
After the set FC has been found (Figure 3, step 5), all 
distinct signature ID values are extracted from all 
patterns in FC. Recent alert log slice is then scanned 
and for each signature ID, the algorithm checks 
whether the signature mostly triggers alerts for a few 
source and/or destination combinations only. This 
information is later used by the alert classifier for 
making too generic patterns in FC more restrictive. 
The algorithm starts with checking if each signature 
id produces alerts for only a few combinations of 
proto, srcIP, destIP, and destPort attribute values 
(during our experiments, typical values for d, l, m, 
and p have been “two weeks”, 0.1…0.25, 10…50, 
and 95…99, respectively):  
 
1. For all alerts A in Lt,d that have AID = id, count the 
occurrence times of all distinct combinations (Aproto, 
AsrcIP, AdestIP, AdestPort), and find the total number of 
alerts: j = |{A | A � Lt,d, AID = id}|. 
2. In order to filter out noise, remove all very 
infrequent combinations (combinations that occur 
only once or twice), and set c to the number of 
remaining combinations. 

3. Remove infrequent combinations that have 
occurred much less than the average (less than j/c*l 
times, where l < 1). 
4. If the number of remaining combinations is 
smaller than m and they cover more than p% of the 
alerts with the signature ID id, the combinations are 
returned as the frequent endpoint set Hid. 
 

If the above estimation procedure does not yield 
a result, it is repeated for the (proto, destIP, 
destPort), (proto, srcIP, destPort), and (proto, 
destPort) attribute combinations (in the given order), 
until one of the procedures returns a result or the last 
procedure terminates. Note that during the analysis, 
we are focusing on protocol- and destination-related 
attributes and have excluded the srcPort attribute 
altogether, since source attributes are usually 
associated with attackers and can have a wide range 
of possible values (especially srcPort). However, if 
the srcIP value belongs to a victim, we swap the 
source and destination attribute values and apply the 
estimation procedure in the normal way. 

 
Note that frequent endpoint sets don’t consume 

much storage space, because sets are created only 
for signature IDs that are extracted from patterns in 
FC. Fortunately, the number of such signatures is 
small, since only a few signatures are prolific (see 
the discussion in the beginning of this section). 
Furthermore, a set is created only if it is known to be 
compact, since the number of its elements can not 
exceed the given threshold. Therefore, frequent 
endpoint sets easily fit into memory and the alert 
classifier can access them in a fast way. Figure 4 
presents an enhanced version of the alert classifier. 
Note that it is a generalization of the classifier 
described in Figure 3 – if frequent endpoint sets are 
not calculated, two classifiers are identical. 

 
In order to classify an input alert A, the classifier 

scans the set FC for matching patterns. If A matches 
P from FC and there is no frequent endpoint set for 
AID, A is classified as “routine” (Figure 4, line 6). If 
HAID exists and P is specific enough, A is also 
classified as “routine” (Figure 4, line 8). However, if 
P is too generic (it does not have all the attributes 
that are stored in HAID), the algorithm classifies A as 
“routine” only if the tuple of relevant attribute 
values of A is found in HAID (Figure 4, line 9). 
Otherwise, the next pattern from FC is tried, and if 
the search ends without a result, A is classified as 
“interesting”. For example, if HSNMPGet = {(UDP, 
192.168.1.1, 10.1.1.1, 161), (UDP, 192.168.1.2, 
10.1.1.1, 161)}, the pattern SNMPGet UDP 



 

192.168.1.1 * 10.1.1.1 161 is specific enough and 
classifies any matching alert as “routine”. On the 
other hand, the pattern SNMPGet UDP * * 10.1.1.1 
161 is too generic, and the frequent endpoint set 
HSNMPGet is thus consulted. In that case, the alert (10, 
SNMPGet, UDP, 192.168.1.2, 36129, 10.1.1.1, 161) 
is classified as “routine”, while for (11, SNMPGet, 
UDP, 192.168.1.3, 36129, 10.1.1.1, 161) the search 
of FC for matching patterns will continue. 
 
Input: A – an IDS alert 
Output: 0 if A is classified as “routine”, 
             1 if A is classified as “interesting” 
 
Functions used by the classifier: 
1) the getattr() function returns the set of attribute names  
for the frequent endpoint set H, e.g., if H contains  
(proto, destPort) tuples, getattr(H) returns  
{proto, destPort};  
2) the createtuple(A, AttrSet) function extracts the values 
of attributes AttrSet from the alarm A and creates a tuple  
from them, in order to search a frequent endpoint set, e.g., 
createtuple((10, DNSprobe, UDP, 192.168.1.1, 1234, 
10.1.1.1, 53), {proto, destPort}) returns (UDP, 53) 
 
1: function f 
2:  { 
3:    for each P in FC { 
4:      if (A matches P) then { 
5:        id := AID 
6:        if (Hid does not exist) then return 0 
7:        AttrSet := getattr(Hid) 
8:        if (�� � AttrSet, P has the � attribute) then return 0 
9:        if (createtuple(A, AttrSet) � Hid) then return 0 
10:     } 
11:   } 
12:   return 1 
13: } 
 

Figure 4. An enhanced alert classifier 
 

IMPLEMENTATION AND PERFORMANCE 
In this section, we describe our classifier 

implementation and experiments for estimating its 
performance. During the experiments, we have 
applied our method for three Internet and intranet 
IDS sensors of a large financial institution. In our 
setup, alerts classified as “interesting” are written to 
a separate log file for further review. Classifiers are 
rebuilt every midnight, using the sensor log data of 
the last two weeks that is divided into 1 hour slices. 
After experimenting with several pattern relevance 
thresholds (input parameter k in Figure 3), we finally 
settled for 168. In other words, once the closed 
frequent pattern has been detected for at least half of 
the 1 hour time frames during the last two weeks, it 

will be used for further alert classification. This 
allows for the classifier to adapt to new routine alert 
patterns with a reasonable learning time, without 
being sensitive to occasional bursts of similar alerts. 

 
After initial experiments, we found that several 

port scan alerts were classified as “interesting”, 
although they occurred frequently in almost every 
slice. A closer study revealed that each such port 
scan was done from a single IP address that often 
never appeared again in the IDS log. Therefore, each 
distinct pattern (e.g., PortScan TCP 10.10.1.1 * * 
22) appeared only in a couple of slices, and more 
generic patterns without source-related attributes 
(e.g., PortScan TCP * * * 22) were seldom detected. 
As a consequence, no patterns describing these alerts 
were included in FC. In order to prevent this, we 
decided to augment FC with closed frequent patterns 
mined from the last 60 days log data, setting the 
slice size to 24 hours and the relevance threshold to 
30. When we used the larger slice size, port scan 
patterns without source attributes were found in 
most slices and included in FC. As a result, port scan 
alerts were classified correctly.  

 
Frequent pattern mining tasks (step 2 in Figure 

3) are the most CPU and memory intensive parts of 
the classifier building algorithm. In order to save 
CPU and memory consumption and distribute it over 
time, the mining tasks have been implemented as 
UNIX cron jobs. At the 5th minute of every hour, 
frequent patterns for the previous hour are mined 
and saved to disk, so that detected patterns can be 
reused for daily rebuilds of the classifier during the 
next two weeks. In a similar fashion, frequent 
patterns for the previous day are mined at every 
midnight and stored to disk for further reuse. In 
order to allow for decreasing the support threshold 
(input parameter s in Figure 3) in the future, patterns 
are mined with a threshold somewhat lower than s, 
while the classifier building algorithm considers 
only patterns with the support s or higher. 

 
Table 1 presents our experiment results for 31 

days in March-April 2009 (each sensor had over 
16,000 signatures deployed). We found that very 
few signatures produce alerts which have a chance 
to be classified as “routine”, and for these signatures 
frequent endpoint sets are often found which make 
generic patterns more restrictive. During the 
experiments, 81-99% of alerts were classified as 
“routine”, and the set of “interesting” alerts was 5-
100 times smaller than the original alert log. These 
results are comparable with the performance of other 



 

recent data mining methods which have reduced the 
number of alerts by 74-93% [1, 2, 9, 10].  
 

Table 1. Classifier performance 
 

 Sensor 1 Sensor 2 Sensor 3 
max./min./average 
# of alerts per day 

88955 / 
8672 / 
37569 

16289 / 
3475 / 
8941 

819061 / 
105247 / 
194063 

support threshold 
for 1h/1d slices 

10 / 100 10 / 100 20 / 200 

max./min. # of 
patterns in FC 

52 / 46 102 / 40 354 / 341 

max./min. # of 
signature IDs in 
patterns of FC 

16 / 15 12 / 10 16 / 16 

max./min. # of 
freq. endpoint sets 

16 / 14 5 / 3 12 / 10 

max./min. amount 
of “routine” alerts 

98.96% / 
86.36% 

94.27% / 
84.98% 

99.78% / 
81.85% 

average amount of 
“routine” alerts 

93.63% 90.18% 96.44% 

 
If Tp is the set of alerts that are correctly classified as 
“interesting”, Fp is the set of alerts incorrectly 
classified as “interesting”, and Fn is the set of alerts 
incorrectly classified as “routine”, then precision is 
defined as |Tp| / (|Tp| + |Fp|) and recall is defined as 
|Tp| / (|Tp| + |Fn|). In order to estimate the classifier 
recall and precision, we extracted 274,354 
penetration test alerts (triggered by 660 signatures) 
and 47,257 known irrelevant alerts (triggered by 42 
signatures) from one sensor log, and replayed them 
to the classifier of the same sensor. All alerts were 
produced during 4 days in December 2008; IDs of 5 
signatures that triggered 31,407 pen-test alerts also 
appeared in FC. Nevertheless, 274,207 pen-test alerts 
were correctly classified as “interesting”, yielding 
the recall of 99.94%. From 277,932 alerts classified 
as “interesting”, only 3,725 were irrelevant alerts, 
yielding the precision of 98.65%. 
 

OPEN ISSUES AND FUTURE WORK 
In this paper, we have presented a novel data 

mining based IDS alert classification method. 
Although our preliminary results are promising, one 
issue remains open – major changes in the arrival 
rate of routine alerts might be symptoms of large 
scale attacks, but are hard to detect. However, this is 
an inherent weakness of alert classification and 
filtering systems (e.g., see [3, 5, 6] for a related 
discussion). For the future work, we plan to research 
our classification method further, and study various 
statistical algorithms (e.g., regression analysis and 
time series analysis) for detecting unexpected 
fluctuations in the arrival rates of routine alerts. 
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