

Real-time Classification of IDS Alerts with Data
Mining Techniques

Risto Vaarandi

Copyright ©2009 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this
material for advertising or promotional purposes or for creating new collective works for resale or redistribution
to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from the
IEEE.

Reprinted from Proceedings of the 2009 IEEE MILCOM Conference.
(ISBN: 978-1-4244-5239-2)

REAL-TIME CLASSIFICATION OF IDS ALERTS WITH DATA MINING TECHNIQUES

Risto Vaarandi

Cooperative Cyber Defence Centre of Excellence
Tallinn, Estonia

risto dot vaarandi at mil dot ee

ABSTRACT
During the last decade, intrusion detection

systems (IDSs) have become a widely used measure
for security management. However, these systems
often generate many false positives and irrelevant
alerts. In this paper, we propose a data mining
based real-time method for distinguishing important
network IDS alerts from frequently occurring false
positives and events of low importance. Unlike
conventional data mining based approaches, our
method is fully automated and able to adjust to
environment changes without a human intervention.

INTRODUCTION
During the last decade, intrusion detection

systems (IDSs) have become a widely used measure
for security and situation management. However,
these systems are known to generate many alerts,
with a considerable amount of them being either
false positives or of low importance. This problem is
especially common for network IDSs that monitor
network segments for unwanted or malicious traffic.
It is not unusual to receive thousands of alerts from a
single network IDS sensor per day, with more than
90% of the alerts being irrelevant [1, 2, 3]. This
often prevents the security analyst from spotting and
handling events that represent a real threat.

Today, many network IDS vendors are using

signature-based approach for identifying unwanted
and malicious traffic – the IDS sensor is equipped
with human-written signatures that describe bad
network packets (e.g., a signature could contain a
regular expression for matching the packet payload).
Although it might seem tempting to eliminate
irrelevant IDS alerts by tuning the vendor signatures
for the local environment, this approach is often
infeasible. First, signature development is a complex
task that requires a lot of expertise and involves
extensive testing in a sophisticated lab environment.
However, most end users have neither such expertise
nor testing resources. Second, several vendors don’t
reveal the signature content to the end user, in order

to protect the confidentiality of proprietary attack
detection techniques. Third, most vendors are
frequently releasing signature updates which may
conflict with customer changes. Last but not least, in
many cases the alert is irrelevant not because of a
faulty signature, but rather because of the
surrounding context. For example, a signature for
detecting SNMP probes from external networks
might also trigger IDS alerts on SNMP GET queries
from ISP network management servers, although
these are a routine monitoring activity.

For the reasons above, false positives and other

irrelevant IDS alerts can’t be avoided in most
environments. In order to distinguish important IDS
alerts from irrelevant events, IDS alert log analysis
techniques are often used. Many approaches have
been suggested for this purpose like machine
learning [4], time series modeling [3, 5], the use of
control charts [6], etc. During the last decade, data
mining based methods have also been proposed in a
number of research papers [1, 2, 7, 8, 9, 10, 11].
With these methods, IDS alert logs from the recent
past are mined for knowledge that is used for the
creation of event filtering and correlation rules for
future IDS alerts. However, existing methods are
inherently semi-automated – they assume that a
human expert interprets detected knowledge and
creates event filtering and correlation rules by hand.

In this paper, we extend our previous research

[11, 12] and propose a novel unsupervised data
mining based approach for IDS alert classification.
With this approach, knowledge is mined from IDS
logs and processed in an automated way, in order to
build an alert classifier. The classifier is then used in
real-time for distinguishing important IDS alerts
from frequently occurring false positives and events
of low importance. The remainder of this paper is
organized as follows: first, an overview of related
work is provided; then, the algorithm for building
the classifier is presented; the third section describes
the classifier implementation and performance; the
last section discusses open issues and future work.

RELATED WORK
Data mining methods were first used for

knowledge discovery from telecommunication event
logs more than a decade ago [13]. In the context of
IDS alert log mining, a number of approaches have
been suggested. Clifton and Gengo [7] have
investigated the detection of frequent alert
sequences, in order to use this knowledge for
creating IDS alert filters. Long et al. [8] have
suggested a supervised clustering algorithm for
distinguishing Snort IDS true alerts from false
positives. Julisch and Dacier [1] have proposed a
conceptual clustering technique for IDS alert logs,
so that clusters correspond to alert descriptions, and
a human expert can use them for developing filtering
and correlation rules for future IDS alerts. During
their experiments, Julisch and Dacier found that
these hand written rules reduced the number of alerts
by an average of 75% [1]. This work was later
extended by Julisch who reported the reduction of
alerts by 87% [2]. Al-Mamory et al. [9, 10] have
proposed clustering algorithms for finding
generalized alarms which help the human analyst to
write filters. During the experiments, the number of
alarms decreased by 93% [9] and 74% [10].

BUILDING THE ALERT CLASSIFIER
In this section, we propose a frequent itemset

mining based method for discovering knowledge
from historical IDS alert logs and creating alert
classifiers from this knowledge in an automated
manner. Our method is motivated by the main
drawback of previously proposed data mining
approaches – a human expert has to analyze detected
knowledge and manually create event filtering and
correlation rules. Unfortunately, this is an expensive
procedure that requires a lot of skill and that has to
be performed regularly (e.g., on a monthly basis
[2]), because the environment is changing
constantly. For instance, signature database updates
from vendors may introduce new alert messages to
IDS alert logs.

Our method is also motivated by the following

observations. First, most alerts are triggered by only
a few signatures. For example, when we inspected
the logs of three IDS sensors of a large financial
institution for the January-March 2009 time frame,
we found that ten most prolific signatures produced
85.6%, 86.2% and 96.2% of the alerts, respectively
(each sensor had over 16,000 signatures deployed
which triggered more than 300,000 alerts per
month). Other researchers have observed the same

phenomenon – e.g., in [3] it is reported that 68% of
the alerts were produced by five signatures, while
according to [5] seven signatures produced 77% of
the alerts. Second, if a signature has triggered many
alerts over longer periods of time, it is also likely to
do so in the future. During our experiments, we
identified twenty most prolific signatures for all days
in the January-March 2009 time frame (90 days),
using the logs of previously mentioned three IDS
sensors. When we examined these 90 lists for each
sensor, we found that 12, 10 and 11 signatures
appeared in all lists, respectively. Taking into
account these observations, we argue that in many
environments a relatively small number of very
frequent alert patterns can be found in IDS alert
logs. Furthermore, these patterns describe the
majority of alerts that will appear in the future. We
also argue that since the patterns represent alerts that
occur very frequently over longer periods of time,
these alerts are well-known to security analysts who
review IDS logs regularly. Due to their frequency
and persistent nature, we call them routine alerts in
the remainder of this paper.

When we investigated routine alerts from

previously mentioned three IDS sensors, we found
that they are either false positives or events of low
importance. One of the commonly occurring false
positive alerts is triggered by network monitoring
traffic coming from trusted sources (ISP network
management servers). A prominent alert of low
importance is related to MS Slammer Sapphire
worm which infected many computers around the
world in 2003. Despite vast majority of these
computers were cleaned and patched, there are still
infected nodes around that are constantly scanning
the Internet for victims. Although this malicious
network traffic triggers many alerts, they represent a
very frequent and well-known attack that doesn’t
pose a threat to properly maintained systems.

We believe that the automated real-time

identification of such routine alerts is important in
many environments. First, it helps to save human
effort that is spent for editing alert filters. Therefore,
security analysts will have more time for reviewing
alerts which don’t match routine alert patterns and
thus deserve closer investigation. Second, since most
IDS alerts are routine events, there will be much less
alerts to investigate than in the original IDS log. In
order to detect routine alert patterns, we employ
frequent itemset mining which is a prominent data
mining technique for finding regularities in various
data sets [14], including event logs [12, 13]. From

detected knowledge, an alert classifier is created for
real-time processing of future alerts. Since network
IDS sensors might be of various types and deployed
in a wide range of environments (e.g., public
networks, intranets or DMZs), they might produce
very different outputs, therefore it often makes sense
to apply our method for individual IDS sensors
separately. For the sake of simplicity, we assume
during the following discussion that the IDS alert
log is produced by a single sensor.

We model each alert A as a tuple A = (Atime, AID,

Aproto, AsrcIP, AsrcPort, AdestIP, AdestPort), where the time
attribute reflects the occurrence time of the alert, the
ID attribute describes the ID of the signature that
produced the alert, and the proto attribute identifies
the network protocol for the traffic that triggered the
alert. The srcIP, srcPort, destIP, and destPort
attributes describe the source IP address, source port,
destination IP address, and destination port of the
traffic. If the protocol does not involve ports (e.g.,
ICMP), we use the constant “-“ for the srcPort and
destPort attribute values. Figure 1 presents an
example how we model Snort IDS alerts.

Mar 31 00:12:23 2009 mysensor [auth.alert]
snort[8903]: [1:1852:4] WEB-MISC robots.txt
access [Classification: access to a potentially
vulnerable web application] [Priority: 2]:
{TCP} 10.219.73.73:36167 -> 192.168.10.2:80

Mar 31 00:12:39 2009 mysensor [auth.alert]
snort[8903]: [1:2003:12] SQL Worm propagation
attempt [Classification: Misc Attack]
[Priority: 2]:
{UDP} 10.183.11.200:1298 -> 192.168.10.245:1434

Mar 31 00:13:09 2009 mysensor [auth.alert]
snort[8903]: [1:483:6] ICMP PING CyberKit 2.2
Windows [Classification: Misc activity]
[Priority: 3]:
{ICMP} 10.16.16.146 -> 192.168.10.60

(1238458343, 1:1852, TCP, 10.219.73.73, 36167,
 192.168.10.2, 80)
(1238458359, 1:2003, UDP, 10.183.11.200, 1298,
 192.168.10.245, 1434)
(1238458389, 1:483, ICMP, 10.16.16.146, -,
 192.168.10.60, -)

Figure 1. Sample Snort IDS log messages with

corresponding alert tuples

If ���� is the set of all valid alerts that the IDS sensor
can produce, the alert classifier is a function
f: ���� � {0, 1}, where the function value 1 denotes
“interesting” and 0 “routine”. IDS alert log L is the
set of alerts that the IDS sensor has logged in the
past. Given the time t and the time interval d, the log
slice Lt,d is defined as follows: Lt,d = {A | A � L,

t � Atime < t + d} (i.e., Lt,d contains all logged alerts
from time t to t+d-1).

Let I = {i1,...,in} be a set of items. If X � I, X is
called an itemset. A transaction is a tuple (tid, X),
where tid is a transaction identifier and X is an
itemset. A transaction database D is a set of
transactions, and the cover of an itemset X is the set
of identifiers of transactions that contain X:
cover(X) = {tid | (tid, Y) � D, X � Y}. The support
of an itemset X is defined as the number of elements
in its cover: supp(X) = |cover(X)|. If itemset X does
not have any proper supersets with the same support
(��Y, X � Y, supp(X) = supp(Y)), X is called a
closed itemset. The frequent itemset mining problem
is defined as follows [14] – given the transaction
database D and the support threshold s, find all
itemsets with the support s or higher (each such set
is called a frequent itemset), and the supports of
frequent itemsets. Instead of all frequent itemsets,
we focus on mining closed frequent itemsets from
IDS logs, since they are a compact and lossless
representation of all frequent itemsets [15]. If D is a
transaction database and s is a support threshold,
Fclosed(D, s) denotes the set of closed frequent
itemsets for D and s.

In order to apply frequent itemset mining

formalism to IDS alert log L, we order the alerts in L
in the occurrence time ascending order (alerts with
identical occurrence times can be ordered by other
attributes). If A is the m-th alert from L, we can view
it as a transaction (m, X), where X = {(AID,1),
(Aproto,2), (AsrcIP,3), (AsrcPort,4), (AdestIP,5), (AdestPort,6)}.
In other words, in order to distinguish identical
values of different attributes, we order the relevant
six attributes and store both the attribute value and
number into each item. In that way, the IDS alert log
L becomes a transaction database (we denote it by
D(L)), and frequent itemset mining algorithms can
be applied to this database. Detected closed frequent
itemsets describe frequent alert patterns which not
merely identify prolific signatures, but rather reveal
strong associations between all types of attribute
values. E.g., the itemset {(PHPBufferOverflow,1),
(TCP,2), (10.1.1.1,5), (80,6)} indicates that the PHP
buffer overflow attack is often attempted from
various sources against the HTTP server running at
the node 10.1.1.1. In the remainder of this paper, we
use the terms pattern and itemset interchangeably.
We also use the string notation for itemsets
(patterns), where attribute values are extracted from
items and written in the order of attributes; if there is

no item for an attribute, asterisk (*) is written. For
instance, the above itemset is denoted by
PHPBufferOverflow TCP * * 10.1.1.1 80.

If A = (Atime, AID, Aproto, AsrcIP, AsrcPort, AdestIP,

AdestPort) is an alert and P is a pattern, we say that A
matches P if P � {(AID,1), (Aproto,2), (AsrcIP,3),
(AsrcPort,4), (AdestIP,5), (AdestPort,6)}. For example, the
alert (100, DNSprobe, UDP, 10.1.1.1, 3761,
10.1.1.2, 53) matches the pattern DNSprobe UDP *
* * 53, but not the pattern DNSprobe UDP * *
10.1.1.3 53. If P is a pattern and there exists a valid
signature ID id, so that (id,1) � P, we say that P has
the ID attribute. For other attributes � � {proto,
srcIP, srcPort, destIP, destPort}, we define P has
the � attribute in a similar fashion.

During our previous research, we have

developed a data mining tool LogHound that
implements an efficient frequent itemset mining
algorithm for event log data sets [12]. LogHound
can be configured to store both the attribute name
and value into items and is thus suitable for mining
patterns from IDS alert logs according to our model.
Figure 2 depicts sample Snort IDS alert patterns that
have been detected with LogHound.

VNC horizontal port scan from 10.22.50.53
1:2002911 TCP 10.22.50.53 * * 5900
Support: 20

SQL Worm propagation attempt
1:2003 UDP * * * 1434
Support: 98

bad TCP traffic to 192.168.19.20:80
* TCP * * 192.168.19.20 80
Support: 137

Cyberkit ping from 10.16.16.1 to 192.168.10.60
1:483 ICMP 10.16.16.1 - 192.168.10.60 -
Support: 288

Figure 2. Sample alert patterns detected with LogHound

With traditional IDS log mining systems, human
experts would use the knowledge depicted in Figure
2 for writing event filtering and correlation rules. At
first glance, it might seem tempting to automate this
procedure in a straightforward manner and define
the alert classifier in the following way (L is the IDS
alert log and s is the support threshold):

f(A) = 0, if �X � Fclosed(D(L), s), A matches X;

1, otherwise

In other words, the classifier labels the alert as
“interesting” if it does not match any of the closed

frequent patterns, otherwise the alert is labeled as
“routine”. However, the above method for building
the classifier has several drawbacks. First, an
intensive attack might trigger many IDS alerts and
create frequent patterns, although the attack itself
could only last for a short time. If a similar attack
occurs in the future, the classifier will mistakenly
label attack alerts as “routine”, although they are
highly interesting. Second, some patterns from
Fclosed(D(L), s) are too generic. For example, the
third pattern in Figure 2 implies that all alerts
regarding the target “HTTP server at the node
192.168.19.20” will be classified as “routine”.

For the reasons above, we propose another

algorithm for building the classifier that considers
IDS alerts from a time window ts…te. The algorithm
divides these alerts into n slices, with each slice
covering a time frame of the same size (e.g., 1 hour).
After that, closed frequent patterns are mined from
each slice. For building the classifier, only these
patterns are considered which were detected for k or
more slices, and which have the ID attribute. If the
time window ts…te covers a sufficiently large time
frame from the recent past (e.g., 4 weeks), and the
number of slices n and threshold k are large enough
(e.g., there are 672 slices of 1 hour with a threshold
of 336), the algorithm will detect only these patterns
that correspond to routine alerts. Figure 3 provides a
detailed description of the algorithm.

Input:
ts – the beginning of the time window
te – the end of the time window
n – the number of slices
k – the pattern relevance threshold (1 � k � n)
s – the support threshold

Output:
the definition of the alert classifier f: � � {0, 1}

1. d := (te – ts) / n
2. For each i in {0,..., n-1} Fi+1 := Fclosed(D(Lts+i*d,d), s)
3. F := F1 � F2 � … � Fn
4. For each P in F countP := |{Fj | 1 � j � n, P � Fj}|
5. FC := {P | P � F, countP � k, P has the ID attribute}
6. Return the following definition of the alert classifier:

f(A) = 0, if �X � FC, A matches X;

1, otherwise

Figure 3. An algorithm for building the alert classifier

The algorithm has several important properties.
First, it does not require any human intervention.

Second, it can be used for rebuilding the classifier
after certain time periods (e.g., once a day), in order
to make the classifier adaptable to environment
changes. Third, the algorithm is not sensitive to a
short-term noise, since only those patterns are used
for classifying alerts which appear frequently in
many time frames over longer periods of time.

However, although the algorithm removes
patterns without the ID attribute from further
consideration, it is still susceptible to over-
generalization with respect to other attributes (in
IDS alert mining context, this problem has also been
identified in [1]). For example, suppose that the IDS
sensor has a signature for detecting SNMP GET
requests, and the application server 10.1.1.1
normally receives SNMP GET queries only from
two monitoring servers 192.168.1.1 and 192.168.1.2.
If patterns SNMPGet UDP 192.168.1.1 * 10.1.1.1
161 and SNMPGet UDP 192.168.1.2 * 10.1.1.1 161
appear in the set FC, then FC could also contain
SNMPGet UDP * * 10.1.1.1 161 (because its
support can’t be smaller than the sum of supports of
the first two patterns). Unfortunately, the latter
pattern is too generic, since it classifies SNMP GET
request alerts for all source nodes as “routine”,
although requests from other nodes than 192.168.1.1
and 192.168.1.2 are unusual.

In order to address this problem, we augment the

classifier building algorithm in the following way.
After the set FC has been found (Figure 3, step 5), all
distinct signature ID values are extracted from all
patterns in FC. Recent alert log slice is then scanned
and for each signature ID, the algorithm checks
whether the signature mostly triggers alerts for a few
source and/or destination combinations only. This
information is later used by the alert classifier for
making too generic patterns in FC more restrictive.
The algorithm starts with checking if each signature
id produces alerts for only a few combinations of
proto, srcIP, destIP, and destPort attribute values
(during our experiments, typical values for d, l, m,
and p have been “two weeks”, 0.1…0.25, 10…50,
and 95…99, respectively):

1. For all alerts A in Lt,d that have AID = id, count the
occurrence times of all distinct combinations (Aproto,
AsrcIP, AdestIP, AdestPort), and find the total number of
alerts: j = |{A | A � Lt,d, AID = id}|.
2. In order to filter out noise, remove all very
infrequent combinations (combinations that occur
only once or twice), and set c to the number of
remaining combinations.

3. Remove infrequent combinations that have
occurred much less than the average (less than j/c*l
times, where l < 1).
4. If the number of remaining combinations is
smaller than m and they cover more than p% of the
alerts with the signature ID id, the combinations are
returned as the frequent endpoint set Hid.

If the above estimation procedure does not yield
a result, it is repeated for the (proto, destIP,
destPort), (proto, srcIP, destPort), and (proto,
destPort) attribute combinations (in the given order),
until one of the procedures returns a result or the last
procedure terminates. Note that during the analysis,
we are focusing on protocol- and destination-related
attributes and have excluded the srcPort attribute
altogether, since source attributes are usually
associated with attackers and can have a wide range
of possible values (especially srcPort). However, if
the srcIP value belongs to a victim, we swap the
source and destination attribute values and apply the
estimation procedure in the normal way.

Note that frequent endpoint sets don’t consume

much storage space, because sets are created only
for signature IDs that are extracted from patterns in
FC. Fortunately, the number of such signatures is
small, since only a few signatures are prolific (see
the discussion in the beginning of this section).
Furthermore, a set is created only if it is known to be
compact, since the number of its elements can not
exceed the given threshold. Therefore, frequent
endpoint sets easily fit into memory and the alert
classifier can access them in a fast way. Figure 4
presents an enhanced version of the alert classifier.
Note that it is a generalization of the classifier
described in Figure 3 – if frequent endpoint sets are
not calculated, two classifiers are identical.

In order to classify an input alert A, the classifier

scans the set FC for matching patterns. If A matches
P from FC and there is no frequent endpoint set for
AID, A is classified as “routine” (Figure 4, line 6). If
HAID exists and P is specific enough, A is also
classified as “routine” (Figure 4, line 8). However, if
P is too generic (it does not have all the attributes
that are stored in HAID), the algorithm classifies A as
“routine” only if the tuple of relevant attribute
values of A is found in HAID (Figure 4, line 9).
Otherwise, the next pattern from FC is tried, and if
the search ends without a result, A is classified as
“interesting”. For example, if HSNMPGet = {(UDP,
192.168.1.1, 10.1.1.1, 161), (UDP, 192.168.1.2,
10.1.1.1, 161)}, the pattern SNMPGet UDP

192.168.1.1 * 10.1.1.1 161 is specific enough and
classifies any matching alert as “routine”. On the
other hand, the pattern SNMPGet UDP * * 10.1.1.1
161 is too generic, and the frequent endpoint set
HSNMPGet is thus consulted. In that case, the alert (10,
SNMPGet, UDP, 192.168.1.2, 36129, 10.1.1.1, 161)
is classified as “routine”, while for (11, SNMPGet,
UDP, 192.168.1.3, 36129, 10.1.1.1, 161) the search
of FC for matching patterns will continue.

Input: A – an IDS alert
Output: 0 if A is classified as “routine”,
 1 if A is classified as “interesting”

Functions used by the classifier:
1) the getattr() function returns the set of attribute names
for the frequent endpoint set H, e.g., if H contains
(proto, destPort) tuples, getattr(H) returns
{proto, destPort};
2) the createtuple(A, AttrSet) function extracts the values
of attributes AttrSet from the alarm A and creates a tuple
from them, in order to search a frequent endpoint set, e.g.,
createtuple((10, DNSprobe, UDP, 192.168.1.1, 1234,
10.1.1.1, 53), {proto, destPort}) returns (UDP, 53)

1: function f
2: {
3: for each P in FC {
4: if (A matches P) then {
5: id := AID
6: if (Hid does not exist) then return 0
7: AttrSet := getattr(Hid)
8: if (�� � AttrSet, P has the � attribute) then return 0
9: if (createtuple(A, AttrSet) � Hid) then return 0
10: }
11: }
12: return 1
13: }

Figure 4. An enhanced alert classifier

IMPLEMENTATION AND PERFORMANCE
In this section, we describe our classifier

implementation and experiments for estimating its
performance. During the experiments, we have
applied our method for three Internet and intranet
IDS sensors of a large financial institution. In our
setup, alerts classified as “interesting” are written to
a separate log file for further review. Classifiers are
rebuilt every midnight, using the sensor log data of
the last two weeks that is divided into 1 hour slices.
After experimenting with several pattern relevance
thresholds (input parameter k in Figure 3), we finally
settled for 168. In other words, once the closed
frequent pattern has been detected for at least half of
the 1 hour time frames during the last two weeks, it

will be used for further alert classification. This
allows for the classifier to adapt to new routine alert
patterns with a reasonable learning time, without
being sensitive to occasional bursts of similar alerts.

After initial experiments, we found that several

port scan alerts were classified as “interesting”,
although they occurred frequently in almost every
slice. A closer study revealed that each such port
scan was done from a single IP address that often
never appeared again in the IDS log. Therefore, each
distinct pattern (e.g., PortScan TCP 10.10.1.1 * *
22) appeared only in a couple of slices, and more
generic patterns without source-related attributes
(e.g., PortScan TCP * * * 22) were seldom detected.
As a consequence, no patterns describing these alerts
were included in FC. In order to prevent this, we
decided to augment FC with closed frequent patterns
mined from the last 60 days log data, setting the
slice size to 24 hours and the relevance threshold to
30. When we used the larger slice size, port scan
patterns without source attributes were found in
most slices and included in FC. As a result, port scan
alerts were classified correctly.

Frequent pattern mining tasks (step 2 in Figure

3) are the most CPU and memory intensive parts of
the classifier building algorithm. In order to save
CPU and memory consumption and distribute it over
time, the mining tasks have been implemented as
UNIX cron jobs. At the 5th minute of every hour,
frequent patterns for the previous hour are mined
and saved to disk, so that detected patterns can be
reused for daily rebuilds of the classifier during the
next two weeks. In a similar fashion, frequent
patterns for the previous day are mined at every
midnight and stored to disk for further reuse. In
order to allow for decreasing the support threshold
(input parameter s in Figure 3) in the future, patterns
are mined with a threshold somewhat lower than s,
while the classifier building algorithm considers
only patterns with the support s or higher.

Table 1 presents our experiment results for 31

days in March-April 2009 (each sensor had over
16,000 signatures deployed). We found that very
few signatures produce alerts which have a chance
to be classified as “routine”, and for these signatures
frequent endpoint sets are often found which make
generic patterns more restrictive. During the
experiments, 81-99% of alerts were classified as
“routine”, and the set of “interesting” alerts was 5-
100 times smaller than the original alert log. These
results are comparable with the performance of other

recent data mining methods which have reduced the
number of alerts by 74-93% [1, 2, 9, 10].

Table 1. Classifier performance

 Sensor 1 Sensor 2 Sensor 3
max./min./average
of alerts per day

88955 /
8672 /
37569

16289 /
3475 /
8941

819061 /
105247 /
194063

support threshold
for 1h/1d slices

10 / 100 10 / 100 20 / 200

max./min. # of
patterns in FC

52 / 46 102 / 40 354 / 341

max./min. # of
signature IDs in
patterns of FC

16 / 15 12 / 10 16 / 16

max./min. # of
freq. endpoint sets

16 / 14 5 / 3 12 / 10

max./min. amount
of “routine” alerts

98.96% /
86.36%

94.27% /
84.98%

99.78% /
81.85%

average amount of
“routine” alerts

93.63% 90.18% 96.44%

If Tp is the set of alerts that are correctly classified as
“interesting”, Fp is the set of alerts incorrectly
classified as “interesting”, and Fn is the set of alerts
incorrectly classified as “routine”, then precision is
defined as |Tp| / (|Tp| + |Fp|) and recall is defined as
|Tp| / (|Tp| + |Fn|). In order to estimate the classifier
recall and precision, we extracted 274,354
penetration test alerts (triggered by 660 signatures)
and 47,257 known irrelevant alerts (triggered by 42
signatures) from one sensor log, and replayed them
to the classifier of the same sensor. All alerts were
produced during 4 days in December 2008; IDs of 5
signatures that triggered 31,407 pen-test alerts also
appeared in FC. Nevertheless, 274,207 pen-test alerts
were correctly classified as “interesting”, yielding
the recall of 99.94%. From 277,932 alerts classified
as “interesting”, only 3,725 were irrelevant alerts,
yielding the precision of 98.65%.

OPEN ISSUES AND FUTURE WORK
In this paper, we have presented a novel data

mining based IDS alert classification method.
Although our preliminary results are promising, one
issue remains open – major changes in the arrival
rate of routine alerts might be symptoms of large
scale attacks, but are hard to detect. However, this is
an inherent weakness of alert classification and
filtering systems (e.g., see [3, 5, 6] for a related
discussion). For the future work, we plan to research
our classification method further, and study various
statistical algorithms (e.g., regression analysis and
time series analysis) for detecting unexpected
fluctuations in the arrival rates of routine alerts.

REFERENCES

[1] K. Julisch and M. Dacier. “Mining intrusion detection
alarms for actionable knowledge,” in Proc. of 2002 ACM
SIGKDD International Conference on Knowledge
Discovery and Data Mining, pp. 366-375.
[2] K. Julisch. “Clustering Intrusion Detection Alarms to
Support Root Cause Analysis,” in ACM Transactions on
Information and System Security, vol. 6(4), 2003, pp.
443-471.
[3] J. Viinikka, H. Debar, L. Mé, and R. Séguier. “Time
Series Modeling for IDS Alert Management,” in Proc. of
2006 ACM Symposium on Information, Computer and
Communications Security, pp. 102-113.
[4] T. Pietraszek. “Using Adaptive Alert Classification to
Reduce False Positives in Intrusion Detection,” in Proc.
of 2004 RAID Symposium, pp. 102-124.
[5] J. Viinikka, H. Debar, L. Mé, A. Lehikoinen, and M.
Tarvainen. “Processing intrusion detection alert
aggregates with time series modeling,” in Information
Fusion Journal, 2009, to appear.
[6] J. Viinikka and H. Debar. “Monitoring IDS
Background Noise Using EWMA Control Charts and
Alert Information,” in Proc. of 2004 RAID Symposium,
pp. 166-187.
[7] C. Clifton and G. Gengo. “Developing Custom
Intrusion Detection Filters Using Data Mining,” in Proc.
of 2000 MILCOM Symposium, pp. 440-443.
[8] J. Long, D. Schwartz, and S. Stoecklin.
“Distinguishing False from True Alerts in Snort by Data
Mining Patterns of Alerts,” in Proc. of 2006 SPIE
Defense and Security Symposium, pp. 62410B-1--
62410B-10.
[9] S. O. Al-Mamory, H. Zhang, and A. R. Abbas. “IDS
Alarms Reduction Using Data Mining,” in Proc. of 2008
IEEE World Congress on Computational Intelligence, pp.
3564-3570.
[10] S. O. Al-Mamory and H. Zhang. “Intrusion
Detection Alarms Reduction Using Root Cause Analysis
and Clustering,” in Computer Communications, vol.
32(2), 2009, pp. 419-430.
[11] R. Vaarandi. “Mining Event Logs with SLCT and
LogHound,” in Proc. of 2008 IEEE/IFIP Network
Operations and Management Symposium, pp. 1071-1074.
[12] R. Vaarandi. “A Breadth-First Algorithm for Mining
Frequent Patterns from Event Logs,” in Proc. of 2004
IFIP International Conference on Intelligence in
Communication Systems, pp. 293-308.
[13] K. Hätönen, M. Klemettinen, H. Mannila, P.
Ronkainen, and H. Toivonen. “Knowledge Discovery
from Telecommunication Network Alarm Databases,” in
Proc. of 1996 International Conference on Data
Engineering, pp. 115-122.
[14] B. Goethals. “Survey on Frequent Pattern Mining,”
Technical Report, University of Helsinki.
[15] M. J. Zaki and C.-J. Hsiao. “CHARM: An Efficient
Algorithm for Closed Itemset Mining,” in Proc. of 2002
SIAM International Conference on Data Mining, pp. 457-
473.

