

Mining Event Logs with SLCT and LogHound

Risto Vaarandi

Copyright ©2008 IEEE. Personal use of this material is permitted. However, permission to
reprint/republish this material for advertising or promotional purposes or for creating new collective
works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this
work in other works must be obtained from the IEEE.

Reprinted from Proceedings of the 2008 IEEE/IFIP Network Operations and Management Symposium.
(ISBN: 978-1-4244-2066-7)

Mining Event Logs with SLCT and LogHound

Risto Vaarandi
Cooperative Cyber Defence Centre of Excellence

Tallinn, Estonia
firstname.lastname@mil.ee

Abstract—With the growth of communication networks, event
logs are increasing in size at a fast rate. Today, it is not
uncommon to have systems that generate tens of gigabytes of log
data per day. Log data are likely to contain information that
deserves closer attention – such as security events – but the task
of reviewing logs manually is beyond the capabilities of a human.
This paper discusses data mining tools SLCT and LogHound that
were designed for assisting system management personnel in
extracting knowledge from event logs.

Keywords-event log analysis; data security; data mining

I. INTRODUCTION

Reviewing event logs is an important task for network
administrators, security analysts, and other system management
personnel. The obtained knowledge can be useful for various
purposes, like writing new rules for event log monitoring tools,
handling security incidents, etc. However, today’s large
networks and IT systems can generate large amounts of log
data which makes the manual review of event logs infeasible.
Therefore, the automation of event log analysis is an important
research problem in network and system management.

In order to tackle this problem, data mining techniques have
often been proposed. Recently suggested approaches have been
mostly based on the Apriori algorithm for mining frequent
itemsets [1], and have been designed for mining frequent event
type patterns (e.g., see [2, 3, 4]). The suggested approaches
have several drawbacks. First, they focus on mining event type
patterns, ignoring patterns of other sorts that are potentially
interesting. For example, the detection of line patterns is
important for syslog event logs, since this helps the system
administrator to write regular expressions for log monitoring
tools. Second, proposed approaches are only able to detect
frequent patterns, while infrequent events are highly relevant as
well in many cases (e.g., in the domain of network security).
Third, the Apriori algorithm is known to be computationally
inefficient for mining longer patterns [5] that are common for
event log data sets.

This paper discusses data mining utilities SLCT and
LogHound that address the shortcomings described above. The
main design objectives of these tools were lightweight design,
modest resource requirements, and flexibility. Like many
UNIX utilities and a number of network diagnostic programs
(e.g., grep or tcpdump), SLCT and LogHound are compact
command line tools – they produce textual output and consist
of just approximately 2,000 lines of C code. They employ
several techniques (which are based on special properties of

event log data sets) for speeding up their work and reducing
their memory consumption. Because of the lightweight design,
SLCT and LogHound can be easily integrated with other
applications and used in various shell scripts and pipelines. The
tools are able to analyze raw event logs and have command
line options for preprocessing the logs on-the-fly with regular
expressions, in order to facilitate rapid deployment. The tools
can be used for traditional off-line knowledge discovery, but
also for automated close-to-real-time data analysis. LogHound
is a part of the Sisyphus log mining toolkit developed at Sandia
National Labs [6], while SLCT was employed by earlier
versions of Sisyphus [7].

The remainder of the paper is organized as follows –
section II presents an overview of SLCT, LogHound, and the
underlying algorithms; section III discusses two case studies of
Snort IDS and Cisco Netflow log analysis with SLCT and
LogHound; and section IV concludes the paper.

II. OVERVIEW OF SLCT AND LOGHOUND

A. SLCT (Simple Logfile Clustering Tool)
SLCT employs a data clustering algorithm for analyzing

textual event logs where each log line represents a certain
event. The data clustering problem can be defined as follows –
divide a set of data points into groups (clusters), so that points
from the same cluster are similar to each other; points that do
not fit well to any of the detected clusters are called outliers.
SLCT views each event log line as a data point with categorical
(non-numeric) attributes, where the k-th word of the line is the
value of the k-th attribute. SLCT does not rely on the
traditional distance based clustering approach, since defining
an appropriate distance function for categorical data is not
trivial, and the notion of distance becomes meaningless in a
high-dimensional data space (see [8] for a detailed discussion).
Instead, SLCT uses a density based method for clustering – it
identifies dense regions in the data space and forms clusters
from them, with each cluster corresponding to a certain
frequently occurring line pattern. Since outliers are data points
dissimilar to clustered points, SLCT is also able to detect
infrequent events that possibly represent serious anomalies in
the behavior of the system.

Informally, the algorithm employed by SLCT can be
described as follows (the support threshold N is given by the
end user; details of the algorithm can be found in [8]):

1. discover frequent attribute values (frequent words) –
all attribute values that are present at least N times in

This work is supported by SEB Eesti Ühispank.

the data set (identical attribute values belonging to
different attributes are counted separately),

2. for each data point extract all frequent attribute values
from the point and count data points with the same
combination of values (note that each combination
represents a certain line pattern, e.g., User * logged in),

3. combinations that occur at least N times in the data set
are selected as clusters.

The first two steps of the algorithm both involve a pass
over the data set and could consume large amounts of memory
for storing attribute values and their combinations with
counters. Fortunately, event log data sets have two important
properties – although they could contain a large number of
words, the majority of words occur very infrequently; also,
there are strong correlations between frequent words, and thus
not many combinations of these words appear in the data set
[8, 9]. SLCT takes advantage of these properties and employs
summary vectors for reducing its memory consumption [8].

SLCT is written in C and has been tested on Linux and
Solaris. Instead of outputting individual lines that belong to
each cluster, it prints out cluster descriptions like several other
well-known algorithms [8], e.g., myhost * log: Password
authentication for * accepted. With the –r option given, SLCT
makes another pass over the data set, in order to check variable
parts (*) of cluster descriptions for constant heads and tails.
E.g., the cluster description given above would become myhost
sshd[*]: log: Password authentication for * accepted. If the –o
option is given, SLCT will also detect outliers during the extra
data pass and write them to a separate file.

Other commonly used options are –s and –d for setting the
support threshold and the word delimiter; –f <fregexp> for
processing only the lines that match the regular expression
<fregexp>; and –t <template> for converting the lines that
have matched <fregexp> according to the string <template>,
replacing $<number> variables with substring matches. E.g., if
<fregexp> is sshd\[[0-9]+\]: (.+) and <template> is $1, then
the line sshd[1344]: connect from 192.168.1.1 will be
converted to connect from 192.168.1.1. The last three options
allow the user to configure various preprocessing schemes in a
flexible way without writing a separate script. For a complete
description of SLCT, please see the online documentation.

B. LogHound
LogHound employs a frequent itemset mining algorithm for

discovering frequent patterns from event logs. Although
LogHound can mine both line and event type patterns, we will
discuss just the first task in this paper for the sake of brevity.

Let I = {i1,...,in} be a set of items. If X � I, X is called an
itemset, and if |X| = k (i.e., X has k items), X is also called a k-
itemset. A transaction is a tuple (tid, X), where tid is a
transaction identifier and X is an itemset. A transaction
database D is a set of transactions, and the cover of an itemset
X is the set of identifiers of transactions that contain X:
cover(X) = {tid | (tid, Y) � D, X � Y}. The support of an
itemset X is defined as the number of elements in its cover:
supp(X) = |cover(X)|. The frequent itemset mining problem is
defined as follows – given the transaction database D and the

support threshold s, find all itemsets with the support s or
higher (each such set is called a frequent itemset).

Suppose the m-th event log line is “w1 w2 … wk”, where
w1,…,wk are words from the line (note that the same word can
appear more than once). In order to mine line patterns from
event logs, LogHound views that line as a transaction (m, X),
where X = {(w1,1),...,(wk,k)}. With that representation, each
frequent itemset corresponds to a certain frequently occurring
line pattern, e.g., the itemset {(User,1), (login,3), (failure,4)}
corresponds to a pattern User * login failure.

Several prominent algorithms have been proposed for
frequent itemset mining, most notably breadth-first Apriori [1]
and depth-first FP-growth [5] and Eclat [10]. Although FP-
growth and Eclat are reported to outperform Apriori [5, 10],
they assume that the whole transaction database fits into the
main memory. Unfortunately, this assumption does not hold for
larger event log data sets [9]. Therefore, LogHound employs
Apriori-like breadth-first approach. Efficient Apriori
implementations use a memory-resident itemset trie data
structure during mining – the trie is built layer by layer until it
represents all frequent itemsets [9]. However, when the
transaction database contains larger frequent itemsets (this is
often the case for event log data sets), the itemset trie will
consume large amounts of memory and the runtime cost of the
repeated trie traversal will be prohibitive [9]. For speeding up
its work and reducing its memory consumption, LogHound
employs the following techniques:

� in order to reduce the memory cost of mining frequent
items (1-itemsets), a summary vector is used,

� most frequently used transaction data are loaded into a
memory-based cache,

� a separate pass is made over the data set, in order to
detect correlations between frequent items; obtained
knowledge is used for building a reduced itemset trie.

The LogHound algorithm is a generalization of Apriori –
LogHound falls back to Apriori-like behavior for a certain trie
branch if the trie reduction technique is no longer applicable
for building that branch; if the technique is not applicable for
the entire trie (i.e., there are no strong correlations between
frequent items), LogHound is identical to Apriori. Details of
the LogHound algorithm and a formal proof that the reduced
trie represents all frequent itemsets can be found in [9, 11].

Like SLCT, LogHound is written in C and has been tested
on Linux and Solaris. It also shares several command line
options with SLCT (–s, –d, –f, and –t) and supports event log
preprocessing on-the-fly. If the –c option is given, LogHound
mines only closed frequent itemsets (frequent itemsets with no
supersets having the same support). For a complete description
of LogHound, please see the online documentation.

III. CASE STUDIES

A. Applying SLCT for off-line analysis of Snort IDS logs
Snort [12] is a widely used IDS sensor package that applies

attack signatures for detecting suspicious network traffic and
can emit alerts as syslog messages. IDS systems are known to

generate a large number of alerts – in [13], the authors have
found that some attack signatures produce much more alerts
than others, and a significant part of these alerts corresponds to
harmless network traffic (e.g., SNMP packets from known
sources). When analyzing Snort IDS logs, we have observed a
similar phenomenon, which makes it harder for a human
analyst to spot true positives from the log.

In this case study, we present an example of how to employ
SLCT for off-line clustering of Snort IDS syslog messages
from the past, in order to achieve a compact representation of
alert data and ease the task of alert reviewing. A Snort IDS
syslog message consists of three main fields – signature info
(ID, description, classification, priority, and network protocol),
source address, and destination address. Thus, we viewed each
alert as a data point (signature info, source address, destination
address). Source and destination ports were not considered as
attributes but rather as address suffixes, since they are missing
for some network protocols like ICMP.

The original data set contained 41,706 alerts from a time
frame of 24 hours, and we applied SLCT iteratively two
times – first for clustering the original data set, and then for
clustering outliers from the first run. Choosing the right support
threshold for clustering is sometimes not a straightforward
task – if the value is too large, a few generic patterns are
detected as clusters (e.g., * * webserver:80) and there will be
many outliers, while for very small values a large number of
patterns are found. When experimenting with different values,
we finally chose a value of 10 for the first round of clustering,
since it represented a good compromise between the number of
alert patterns and their clarity. The first round of clustering
yielded 402 alert patterns and 930 outliers, while clustering the
outliers with the support threshold of 5 yielded 64 patterns and
266 outliers. In other words, the original data set of 41,706
alerts was reduced about 56.9 times – the security analyst has
to review just 466 alert patterns and 266 individual alerts.

When inspecting alert patterns, we discovered that many of
them represented either false positives or true positives of low
importance (e.g., a worm activity against non-existing
services). Fig. 1 depicts SLCT command line and some of the
more significant alert patterns, while Fig. 2 presents some
outliers that deserved closer attention (for reasons of privacy,
IP addresses have been obfuscated in Fig. 1–2 and sensitive
syslog message fields have been removed from Fig. 2).

B. Applying LogHound for automated close-to-real-time
analysis of Cisco Netflow logs
Cisco Netflow is a widely used protocol for collecting real-

time information about forwarded traffic from routers. Routers
that have this protocol configured emit Netflow records
describing the traffic, e.g., a record is sent for a TCP
connection when the connection is terminated or has been
active (or inactive) for a certain amount of time. The record
contains a number of fields, including the IP protocol number,
source and destination IP addresses, source and destination port
numbers, the number of transferred packets, and the number of
transferred bytes. The collector receives records emitted by
routers and can use them for a variety of purposes, like
performance management or intrusion detection.

$ slct -f 'snort\[[0-9]+\]: (\[[0-9:]+\]) (.+\}) ([0-9\.:]+) ->
([0-9\.:]+)' -t '$1 $2;$3;$4' -d ';' -s 10 -r -o outliers
/var/log/snort.log

[1:2001219:14] BLEEDING-EDGE Potential SSH Scan [Classification:
Attempted Information Leak] [Priority: 2]: {TCP} * *:22
Support: 79

[1:2002911:1] BLEEDING-EDGE SCAN Potential VNC Scan 5900-5920
[Classification: Attempted Information Leak] [Priority: 2]:
{TCP} * *:5900
Support: 15

[1:2002998:5] BLEEDING-EDGE SMTP HELO Non-Displayable Characters
MailEnable Denial of Service [Classification: Attempted Denial
of Service] [Priority: 2]: {TCP} XXX:6* XXX:25
Support: 20

[1:2002:8] WEB-PHP remote include path [Classification:
Web Application Attack] [Priority: 1]: {TCP} * XXX:80
Support: 13

[1:2000545:3] BLEEDING-EDGE SCAN NMAP -f -sS [Classification:
Attempted Information Leak] [Priority: 2]: {TCP} * XXX:80
Support: 15

[1:2000537:3] BLEEDING-EDGE SCAN NMAP -sS [Classification:
Attempted Information Leak] [Priority: 2]: {TCP} * XXX:80
Support: 15

[1:2002087:7] BLEEDING-EDGE POLICY Inbound Frequent Emails –
Possible Spambot Inbound [Classification: Misc activity]
[Priority: 3]: {TCP} * XXX:25
Support: 16

[1:2001795:7] BLEEDING-EDGE DOS Excessive SMTP MAIL-FROM DDoS
[Classification: Detection of a Denial of Service Attack]
[Priority: 2]: {TCP} * XXX:25
Support: 83

[1:2001611:9] BLEEDING-EDGE F5 BIG-IP 3DNS TCP Probe 3
[Classification: Misc activity] [Priority: 3]: {TCP} * XXX:53
Support: 81

[116:55:1] (snort_decoder): Truncated Tcp Options
{TCP} *:80 XXX:*
Support: 10

[1:2002897:3] BLEEDING-EDGE WEB Horde README access probe
[Classification: access to a potentially vulnerable web
application] [Priority: 2]: {TCP} XXX:48* XXX:80
Support: 5

 Figure 1. Sample alert patterns.

[1:2541:8] SMTP TLS SSLv3 invalid data version attempt
[Classification: Attempted Denial of Service] [Priority: 2]:
{TCP} XXX:57009 -> XXX:25

[1:2002894:2] BLEEDING-EDGE VIRUS W32.Nugache SMTP Inbound
[Classification: A Network Trojan was detected] [Priority: 1]:
{TCP} XXX:63549 -> XXX:25

[1:11837:2] SMTP MS Windows Mail UNC navigation remote
command execution [Classification: Attempted User Privilege
Gain] [Priority: 1]: {TCP} XXX:39992 -> XXX:25

[1:1288:10] WEB-FRONTPAGE /_vti_bin/ access [Classification:
access to a potentially vulnerable web application]
[Priority: 2]: {TCP} XXX:2539 -> XXX:80

[1:2000016:4] BLEEDING-EDGE DOS SSL Bomb DoS Attempt
[Classification: Attempted Denial of Service] [Priority: 2]:
{TCP} XXX:53267 -> XXX:443

[1:2002997:2] BLEEDING-EDGE WEB PHP Remote File Inclusion
(monster list http) [Classification: Web Application Attack]
[Priority: 1]: {TCP} XXX:57120 -> XXX:80

[1:2410:3] WEB-PHP IGeneric Free Shopping Cart page.php
access [Classification: access to a potentially vulnerable
web application] [Priority: 2]: {TCP} XXX:51968 -> XXX:80

[1:2000537:3] BLEEDING-EDGE SCAN NMAP -sS
[Classification: Attempted Information Leak] [Priority: 2]:
{TCP} XXX:17423 -> XXX:25

[1:2000545:3] BLEEDING-EDGE SCAN NMAP -f -sS
[Classification: Attempted Information Leak] [Priority: 2]:
{TCP} XXX:17423 -> XXX:25

[1:5715:2] WEB-MISC malformed ipv6 uri overflow attempt
[Classification: Web Application Attack] [Priority: 1]: {TCP}
XXX:4870 -> XXX:80

[116:58:1] (snort_decoder): Experimental Tcp Options found
{TCP} XXX:37329 -> XXX:80

[116:46:1] (snort_decoder) WARNING: TCP Data Offset is less
than 5! {TCP} XXX:0 -> XXX:0

[122:2:0] (portscan) TCP Decoy Portscan {PROTO255} XXX -> XXX

[122:17:0] (portscan) UDP Portscan {PROTO255} XXX -> XXX

 Figure 2. Sample outliers.

flow-cat /var/log/netflow-last5m | flow-print -f 3 | tail -n +2
| perl -nae 'for ($i = 0; $i < $F[6]; ++$i)
 {print "$F[0] $F[3] $F[1] $F[4] $F[2]\n"; }' > traffic;
loghound -c -s 1% traffic

* * * * 6
Support: 1148855

* * * 25 6
Support: 14557

* * * 80 6
Support: 160091

* * * 443 6
Support: 317494

* * company-web-server 80 6
Support: 25814

company-web-server 80 * * 6
Support: 32993

* * company-web-server 443 6
Support: 133870

company-web-server 443 * * 6
Support: 156638

financial-portal 443 company-proxy-server * 6
Support: 13423

company-proxy-server * newspaper-portal 80 6
Support: 12516

newspaper-portal 80 company-proxy-server * 6
Support: 13074

website 80 company-proxy-server 24481 6
Support: 13642

 Figure 3. Sample traffic patterns.

Flow-tools [14] is a widely used collector software package
which contains tools for generating reports from Netflow data
by various criteria (e.g., top source IP addresses by the number
of sent bytes). However, in network security it is often unclear
what to look for and is thus impossible to specify any criterion.

This case study discusses how to mine traffic patterns from
Flow-tools logs in an automated close-to-real-time fashion,
where instead of specific search criteria a frequency threshold
is provided. In our setup, the Flow-tools flow-capture daemon
receives Netflow records from a border gateway and stores
captured data to a binary log file, switching to a new file once
in 5 minutes. When a log file for a 5 minute period is complete,
a cron job (see Fig. 3) converts it to a text file, where for each
packet there is a line source-IP source-Port destination-IP
destination-Port IP-protocol. Then LogHound is applied
several times to this file with different support thresholds and a
web page is created from its output. Since each detected pattern
represents a frequent traffic pattern and its support equals to the
number of packets matching the pattern, network and security
administrators can get a quick overview of the most prominent
classes of network traffic for the last 5 minutes, which allows
them to quickly identify DDoS attacks, worm outbreaks, and
other intensive anomalous network activity.

Fig. 3 displays a part of the snapshot from the live system
for the 1% threshold (for reasons of privacy, IP addresses have
been replaced with string tags in Fig. 3). Altogether, 1,170,858
packets were observed within 5 minutes, and LogHound
detected 50 network traffic patterns. The first group in Fig. 3
depicts protocol patterns – 1,148,855 TCP packets (IP protocol
6) were observed, and other commonly used protocols were
SMTP, HTTP, and HTTPS. The second group of patterns
reflects the use of company’s e-services by customers over
HTTP and HTTPS protocols. The third group describes

employee web browsing through the company’s proxy server –
the first pattern reflects visits to a financial portal, while the
next two patterns represent traffic to a popular newspaper
portal. The last pattern is the most interesting because of its
unusual nature – individual TCP connections to websites
normally don’t show up as strong traffic patterns, and website
is not commonly used by company employees. The closer
investigation revealed that the pattern corresponds to a
legitimate download of a large document file.

IV. FUTURE WORK AND AVAILABILITY

For a future work, we plan to experiment with various
anomaly detection methods and combine them with SLCT and
LogHound, in order to build an event log anomaly detection
system. SLCT and LogHound are licensed under the terms of
GNU GPL. Both tools and their online documentation are
available at http://kodu.neti.ee/~risto.

ACKNOWLEDGMENT

The author expresses his gratitude to Mr. Kaido Raiend,
Dr. Paul Leis, Mr. Ants Leitmäe and Mr. Ain Rasva from SEB
Eesti Ühispank for supporting this work.

REFERENCES
[1] R. Agrawal and R. Srikant, “Fast Algorithms for Mining Association

Rules,” in Proceedings of the 20th International Conference on Very
Large Data Bases, 1994, pp. 478–499.

[2] Q. Zheng, K. Xu, W. Lv, and S. Ma, “Intelligent Search of Correlated
Alarms from Database Containing Noise Data,” in Proceedings of the 8th
IEEE/IFIP Network Operations and Management Symposium (NOMS),
2002, pp. 405–419.

[3] S. Ma and J. L. Hellerstein, “Mining Partially Periodic Event Patterns
with Unknown Periods,” in Proceedings of the 16th International
Conference on Data Engineering, 2000, pp. 205–214.

[4] M. Klemettinen, “A Knowledge Discovery Methodology for
Telecommunication Network Alarm Databases,” PhD Thesis, University
of Helsinki, 1999.

[5] J. Han, J. Pei, and Y.Yin, “Mining Frequent Patterns without Candidate
Generation,” in Proceedings of the 2000 ACM SIGMOD International
Conference on Management of Data, 2000, pp. 1–12.

[6] Sisyphus Log Data Mining Toolkit, http://www.cs.sandia.gov/sisyphus/.
[7] J. Stearley, “Towards Informatic Analysis of Syslogs,” in Proceedings of

the 2004 IEEE International Conference on Cluster Computing, 2004,
pp. 309–318.

[8] R. Vaarandi, “A Data Clustering Algorithm for Mining Patterns From
Event Logs,” in Proceedings of the 2003 IEEE Workshop on IP
Operations and Management (IPOM), 2003, pp. 119–126.

[9] R. Vaarandi, “A Breadth-First Algorithm for Mining Frequent Patterns
from Event Logs,” in Proceedings of the 2004 IFIP International
Conference on Intelligence in Communication Systems, LNCS Vol.
3283, 2004, pp. 293-308.

[10] M. J. Zaki, “Scalable Algorithms for Association Mining,” in IEEE
Transactions on Knowledge and Data Engineering, vol. 12(3), 2000, pp.
372–390.

[11] R. Vaarandi, “Tools and Techniques for Event Log Analysis”, PhD
Thesis, Tallinn University of Technology, 2005.

[12] Snort, http://www.snort.org/.
[13] J. Viinikka, H. Debar, L. Mé, and R. Séguier, “Time Series Modeling for

IDS Alert Management,” in Proceedings of the 2006 ACM Symposium
on Information, Computer and Communications Security, 2006, pp.
102–113.

[14] Flow-tools, http://www.splintered.net/sw/flow-tools/.

