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Abstract—With the growth of communication networks, event 
logs are increasing in size at a fast rate. Today, it is not 
uncommon to have systems that generate tens of gigabytes of log 
data per day. Log data are likely to contain information that 
deserves closer attention – such as security events – but the task 
of reviewing logs manually is beyond the capabilities of a human. 
This paper discusses data mining tools SLCT and LogHound that 
were designed for assisting system management personnel in 
extracting knowledge from event logs. 
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I.  INTRODUCTION 

Reviewing event logs is an important task for network 
administrators, security analysts, and other system management 
personnel. The obtained knowledge can be useful for various 
purposes, like writing new rules for event log monitoring tools, 
handling security incidents, etc. However, today’s large 
networks and IT systems can generate large amounts of log 
data which makes the manual review of event logs infeasible. 
Therefore, the automation of event log analysis is an important 
research problem in network and system management. 

In order to tackle this problem, data mining techniques have 
often been proposed. Recently suggested approaches have been 
mostly based on the Apriori algorithm for mining frequent 
itemsets [1], and have been designed for mining frequent event 
type patterns (e.g., see [2, 3, 4]). The suggested approaches 
have several drawbacks. First, they focus on mining event type 
patterns, ignoring patterns of other sorts that are potentially 
interesting. For example, the detection of line patterns is 
important for syslog event logs, since this helps the system 
administrator to write regular expressions for log monitoring 
tools. Second, proposed approaches are only able to detect 
frequent patterns, while infrequent events are highly relevant as 
well in many cases (e.g., in the domain of network security). 
Third, the Apriori algorithm is known to be computationally 
inefficient for mining longer patterns [5] that are common for 
event log data sets. 

This paper discusses data mining utilities SLCT and 
LogHound that address the shortcomings described above. The 
main design objectives of these tools were lightweight design, 
modest resource requirements, and flexibility. Like many 
UNIX utilities and a number of network diagnostic programs 
(e.g., grep or tcpdump), SLCT and LogHound are compact 
command line tools – they produce textual output and consist 
of just approximately 2,000 lines of C code. They employ 
several techniques (which are based on special properties of 

event log data sets) for speeding up their work and reducing 
their memory consumption. Because of the lightweight design, 
SLCT and LogHound can be easily integrated with other 
applications and used in various shell scripts and pipelines. The 
tools are able to analyze raw event logs and have command 
line options for preprocessing the logs on-the-fly with regular 
expressions, in order to facilitate rapid deployment. The tools 
can be used for traditional off-line knowledge discovery, but 
also for automated close-to-real-time data analysis. LogHound 
is a part of the Sisyphus log mining toolkit developed at Sandia 
National Labs [6], while SLCT was employed by earlier 
versions of Sisyphus [7]. 

The remainder of the paper is organized as follows – 
section II presents an overview of SLCT, LogHound, and the 
underlying algorithms; section III discusses two case studies of 
Snort IDS and Cisco Netflow log analysis with SLCT and 
LogHound; and section IV concludes the paper. 

II. OVERVIEW OF SLCT AND LOGHOUND 

A. SLCT (Simple Logfile Clustering Tool) 
SLCT employs a data clustering algorithm for analyzing 

textual event logs where each log line represents a certain 
event. The data clustering problem can be defined as follows – 
divide a set of data points into groups (clusters), so that points 
from the same cluster are similar to each other; points that do 
not fit well to any of the detected clusters are called outliers.  
SLCT views each event log line as a data point with categorical 
(non-numeric) attributes, where the k-th word of the line is the 
value of the k-th attribute. SLCT does not rely on the 
traditional distance based clustering approach, since defining 
an appropriate distance function for categorical data is not 
trivial, and the notion of distance becomes meaningless in a 
high-dimensional data space (see [8] for a detailed discussion). 
Instead, SLCT uses a density based method for clustering – it 
identifies dense regions in the data space and forms clusters 
from them, with each cluster corresponding to a certain 
frequently occurring line pattern. Since outliers are data points 
dissimilar to clustered points, SLCT is also able to detect 
infrequent events that possibly represent serious anomalies in 
the behavior of the system. 

Informally, the algorithm employed by SLCT can be 
described as follows (the support threshold N is given by the 
end user; details of the algorithm can be found in [8]): 

1. discover frequent attribute values (frequent words) – 
all attribute values that are present at least N times in 
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the data set (identical attribute values belonging to 
different attributes are counted separately), 

2. for each data point extract all frequent attribute values 
from the point and count data points with the same 
combination of values (note that each combination 
represents a certain line pattern, e.g., User * logged in), 

3. combinations that occur at least N times in the data set 
are selected as clusters. 

The first two steps of the algorithm both involve a pass 
over the data set and could consume large amounts of memory 
for storing attribute values and their combinations with 
counters. Fortunately, event log data sets have two important 
properties – although they could contain a large number of 
words, the majority of words occur very infrequently; also, 
there are strong correlations between frequent words, and thus 
not many combinations of these words appear in the data set 
[8, 9]. SLCT takes advantage of these properties and employs 
summary vectors for reducing its memory consumption [8].  

SLCT is written in C and has been tested on Linux and 
Solaris. Instead of outputting individual lines that belong to 
each cluster, it prints out cluster descriptions like several other 
well-known algorithms [8], e.g., myhost * log: Password 
authentication for * accepted. With the –r option given, SLCT 
makes another pass over the data set, in order to check variable 
parts (*) of cluster descriptions for constant heads and tails. 
E.g., the cluster description given above would become myhost 
sshd[*]: log: Password authentication for * accepted. If the –o 
option is given, SLCT will also detect outliers during the extra 
data pass and write them to a separate file.  

Other commonly used options are –s and –d for setting the 
support threshold and the word delimiter; –f <fregexp> for 
processing only the lines that match the regular expression 
<fregexp>; and –t <template> for converting the lines that 
have matched <fregexp> according to the string <template>, 
replacing $<number> variables with substring matches. E.g., if 
<fregexp> is sshd\[[0-9]+\]: (.+) and <template> is $1, then 
the line sshd[1344]: connect from 192.168.1.1 will be 
converted to connect from 192.168.1.1. The last three options 
allow the user to configure various preprocessing schemes in a 
flexible way without writing a separate script. For a complete 
description of SLCT, please see the online documentation. 

B. LogHound 
LogHound employs a frequent itemset mining algorithm for 

discovering frequent patterns from event logs. Although 
LogHound can mine both line and event type patterns, we will 
discuss just the first task in this paper for the sake of brevity.  

Let I = {i1,...,in} be a set of items. If X � I, X is called an 
itemset, and if |X| = k (i.e., X has k items), X is also called a k-
itemset. A transaction is a tuple (tid, X), where tid is a 
transaction identifier and X is an itemset. A transaction 
database D is a set of transactions, and the cover of an itemset 
X is the set of identifiers of transactions that contain X: 
cover(X) = {tid | (tid, Y) � D, X � Y}. The support of an 
itemset X is defined as the number of elements in its cover: 
supp(X) = |cover(X)|. The frequent itemset mining problem is 
defined as follows – given the transaction database D and the 

support threshold s, find all itemsets with the support s or 
higher (each such set is called a frequent itemset).  

Suppose the m-th event log line is “w1 w2 … wk”, where 
w1,…,wk are words from the line (note that the same word can 
appear more than once). In order to mine line patterns from 
event logs, LogHound views that line as a transaction (m, X), 
where X = {(w1,1),...,(wk,k)}. With that representation, each 
frequent itemset corresponds to a certain frequently occurring 
line pattern, e.g., the itemset {(User,1), (login,3), (failure,4)} 
corresponds to a pattern User * login failure. 

Several prominent algorithms have been proposed for 
frequent itemset mining, most notably breadth-first Apriori [1] 
and depth-first FP-growth [5] and Eclat [10]. Although FP-
growth and Eclat are reported to outperform Apriori [5, 10], 
they assume that the whole transaction database fits into the 
main memory. Unfortunately, this assumption does not hold for 
larger event log data sets [9]. Therefore, LogHound employs 
Apriori-like breadth-first approach. Efficient Apriori 
implementations use a memory-resident itemset trie data 
structure during mining – the trie is built layer by layer until it 
represents all frequent itemsets [9]. However, when the 
transaction database contains larger frequent itemsets (this is 
often the case for event log data sets), the itemset trie will 
consume large amounts of memory and the runtime cost of the 
repeated trie traversal will be prohibitive [9]. For speeding up 
its work and reducing its memory consumption, LogHound 
employs the following techniques: 

� in order to reduce the memory cost of mining frequent 
items (1-itemsets), a summary vector is used, 

� most frequently used transaction data are loaded into a 
memory-based cache, 

� a separate pass is made over the data set, in order to 
detect correlations between frequent items; obtained 
knowledge is used for building a reduced itemset trie. 

The LogHound algorithm is a generalization of Apriori – 
LogHound falls back to Apriori-like behavior for a certain trie 
branch if the trie reduction technique is no longer applicable 
for building that branch; if the technique is not applicable for 
the entire trie (i.e., there are no strong correlations between 
frequent items), LogHound is identical to Apriori. Details of 
the LogHound algorithm and a formal proof that the reduced 
trie represents all frequent itemsets can be found in [9, 11].  

Like SLCT, LogHound is written in C and has been tested 
on Linux and Solaris. It also shares several command line 
options with SLCT (–s, –d, –f, and –t) and supports event log 
preprocessing on-the-fly. If the –c option is given, LogHound 
mines only closed frequent itemsets (frequent itemsets with no 
supersets having the same support). For a complete description 
of LogHound, please see the online documentation. 

III. CASE STUDIES 

A. Applying SLCT for off-line analysis of Snort IDS logs 
Snort [12] is a widely used IDS sensor package that applies 

attack signatures for detecting suspicious network traffic and 
can emit alerts as syslog messages. IDS systems are known to 



generate a large number of alerts – in [13], the authors have 
found that some attack signatures produce much more alerts 
than others, and a significant part of these alerts corresponds to 
harmless network traffic (e.g., SNMP packets from known 
sources). When analyzing Snort IDS logs, we have observed a 
similar phenomenon, which makes it harder for a human 
analyst to spot true positives from the log.  

In this case study, we present an example of how to employ 
SLCT for off-line clustering of Snort IDS syslog messages 
from the past, in order to achieve a compact representation of 
alert data and ease the task of alert reviewing. A Snort IDS 
syslog message consists of three main fields – signature info 
(ID, description, classification, priority, and network protocol), 
source address, and destination address. Thus, we viewed each 
alert as a data point (signature info, source address, destination 
address). Source and destination ports were not considered as 
attributes but rather as address suffixes, since they are missing 
for some network protocols like ICMP. 

The original data set contained 41,706 alerts from a time 
frame of 24 hours, and we applied SLCT iteratively two 
times – first for clustering the original data set, and then for 
clustering outliers from the first run. Choosing the right support 
threshold for clustering is sometimes not a straightforward 
task – if the value is too large, a few generic patterns are 
detected as clusters (e.g., * * webserver:80) and there will be 
many outliers, while for very small values a large number of 
patterns are found. When experimenting with different values, 
we finally chose a value of 10 for the first round of clustering, 
since it represented a good compromise between the number of 
alert patterns and their clarity. The first round of clustering 
yielded 402 alert patterns and 930 outliers, while clustering the 
outliers with the support threshold of 5 yielded 64 patterns and 
266 outliers. In other words, the original data set of 41,706 
alerts was reduced about 56.9 times – the security analyst has 
to review just 466 alert patterns and 266 individual alerts. 

When inspecting alert patterns, we discovered that many of 
them represented either false positives or true positives of low 
importance (e.g., a worm activity against non-existing 
services). Fig. 1 depicts SLCT command line and some of the 
more significant alert patterns, while Fig. 2 presents some 
outliers that deserved closer attention (for reasons of privacy, 
IP addresses have been obfuscated in Fig. 1–2  and sensitive 
syslog message fields have been removed from Fig. 2). 

B. Applying LogHound for automated close-to-real-time 
analysis of Cisco Netflow logs 
Cisco Netflow is a widely used protocol for collecting real-

time information about forwarded traffic from routers. Routers 
that have this protocol configured emit Netflow records 
describing the traffic, e.g., a record is sent for a TCP 
connection when the connection is terminated or has been 
active (or inactive) for a certain amount of time. The record 
contains a number of fields, including the IP protocol number, 
source and destination IP addresses, source and destination port 
numbers, the number of transferred packets, and the number of 
transferred bytes. The collector receives records emitted by 
routers and can use them for a variety of purposes, like 
performance management or intrusion detection. 

 
$ slct -f 'snort\[[0-9]+\]: (\[[0-9:]+\]) (.+\}) ([0-9\.:]+) ->  
([0-9\.:]+)' -t '$1 $2;$3;$4' -d ';' -s 10 -r -o outliers  
/var/log/snort.log 
 
[1:2001219:14] BLEEDING-EDGE Potential SSH Scan [Classification:  
Attempted Information Leak] [Priority: 2]: {TCP} * *:22  
Support: 79 
 

[1:2002911:1] BLEEDING-EDGE SCAN Potential VNC Scan 5900-5920  
[Classification: Attempted Information Leak] [Priority: 2]:  
{TCP} * *:5900  
Support: 15 
 

[1:2002998:5] BLEEDING-EDGE SMTP HELO Non-Displayable Characters  
MailEnable Denial of Service [Classification: Attempted Denial  
of Service] [Priority: 2]: {TCP} XXX:6* XXX:25  
Support: 20 
 

[1:2002:8] WEB-PHP remote include path [Classification:  
Web Application Attack] [Priority: 1]: {TCP} * XXX:80  
Support: 13 
 

[1:2000545:3] BLEEDING-EDGE SCAN NMAP -f -sS [Classification:  
Attempted Information Leak] [Priority: 2]: {TCP} * XXX:80  
Support: 15 
 

[1:2000537:3] BLEEDING-EDGE SCAN NMAP -sS [Classification:  
Attempted Information Leak] [Priority: 2]: {TCP} * XXX:80  
Support: 15 
 

[1:2002087:7] BLEEDING-EDGE POLICY Inbound Frequent Emails –  
Possible Spambot Inbound [Classification: Misc activity]  
[Priority: 3]: {TCP} * XXX:25  
Support: 16 
 

[1:2001795:7] BLEEDING-EDGE DOS Excessive SMTP MAIL-FROM DDoS  
[Classification: Detection of a Denial of Service Attack]  
[Priority: 2]: {TCP} * XXX:25  
Support: 83 
 

[1:2001611:9] BLEEDING-EDGE F5 BIG-IP 3DNS TCP Probe 3  
[Classification: Misc activity] [Priority: 3]: {TCP} * XXX:53  
Support: 81 
 

[116:55:1] (snort_decoder): Truncated Tcp Options  
{TCP} *:80 XXX:*  
Support: 10 
 
 

[1:2002897:3] BLEEDING-EDGE WEB Horde README access probe  
[Classification: access to a potentially vulnerable web  
application] [Priority: 2]: {TCP} XXX:48* XXX:80  
Support: 5 
 

 

                    Figure 1. Sample alert patterns. 
 

[1:2541:8] SMTP TLS SSLv3 invalid data version attempt  
[Classification: Attempted Denial of Service] [Priority: 2]:  
{TCP} XXX:57009 -> XXX:25 
 

[1:2002894:2] BLEEDING-EDGE VIRUS W32.Nugache SMTP Inbound  
[Classification: A Network Trojan was detected] [Priority: 1]:  
{TCP} XXX:63549 -> XXX:25 
 

[1:11837:2] SMTP MS Windows Mail UNC navigation remote  
command execution [Classification: Attempted User Privilege  
Gain] [Priority: 1]: {TCP} XXX:39992 -> XXX:25 
 

[1:1288:10] WEB-FRONTPAGE /_vti_bin/ access [Classification:  
access to a potentially vulnerable web application]  
[Priority: 2]: {TCP} XXX:2539 -> XXX:80 
 

[1:2000016:4] BLEEDING-EDGE DOS SSL Bomb DoS Attempt  
[Classification: Attempted Denial of Service] [Priority: 2]:  
{TCP} XXX:53267 -> XXX:443 
 

[1:2002997:2] BLEEDING-EDGE WEB PHP Remote File Inclusion  
(monster list http) [Classification: Web Application Attack]  
[Priority: 1]: {TCP} XXX:57120 -> XXX:80 
 

[1:2410:3] WEB-PHP IGeneric Free Shopping Cart page.php  
access [Classification: access to a potentially vulnerable  
web application] [Priority: 2]: {TCP} XXX:51968 -> XXX:80 
 

[1:2000537:3] BLEEDING-EDGE SCAN NMAP -sS  
[Classification: Attempted Information Leak] [Priority: 2]:  
{TCP} XXX:17423 -> XXX:25 
 

[1:2000545:3] BLEEDING-EDGE SCAN NMAP -f -sS  
[Classification: Attempted Information Leak] [Priority: 2]:  
{TCP} XXX:17423 -> XXX:25 
 

[1:5715:2] WEB-MISC malformed ipv6 uri overflow attempt  
[Classification: Web Application Attack] [Priority: 1]: {TCP}  
XXX:4870 -> XXX:80 
 

[116:58:1] (snort_decoder): Experimental Tcp Options found  
{TCP} XXX:37329 -> XXX:80 
 

[116:46:1] (snort_decoder) WARNING: TCP Data Offset is less  
than 5! {TCP} XXX:0 -> XXX:0 
 

[122:2:0] (portscan) TCP Decoy Portscan {PROTO255} XXX -> XXX 
 

[122:17:0] (portscan) UDP Portscan {PROTO255} XXX -> XXX 
 

                    Figure 2. Sample outliers. 
 



 
flow-cat /var/log/netflow-last5m | flow-print -f 3 | tail -n +2  
| perl -nae 'for ($i = 0; $i < $F[6]; ++$i)  
  {print "$F[0] $F[3] $F[1] $F[4] $F[2]\n"; }' > traffic; 
loghound -c -s 1% traffic 
 
* * * * 6 
Support: 1148855 
 

* * * 25 6 
Support: 14557 
 

* * * 80 6 
Support: 160091 
 

* * * 443 6 
Support: 317494 
 

 
 
* * company-web-server 80 6 
Support: 25814 
 

company-web-server 80 * * 6 
Support: 32993 
 

* * company-web-server 443 6 
Support: 133870 
 

company-web-server 443 * * 6 
Support: 156638 
 
 
financial-portal 443 company-proxy-server * 6 
Support: 13423 
 

company-proxy-server * newspaper-portal 80 6 
Support: 12516 
 

newspaper-portal 80 company-proxy-server * 6 
Support: 13074 
 

website 80 company-proxy-server 24481 6 
Support: 13642 
 

                    Figure 3. Sample traffic patterns. 
 

Flow-tools [14] is a widely used collector software package 
which contains tools for generating reports from Netflow data 
by various criteria (e.g., top source IP addresses by the number 
of sent bytes). However, in network security it is often unclear 
what to look for and is thus impossible to specify any criterion.  

This case study discusses how to mine traffic patterns from 
Flow-tools logs in an automated close-to-real-time fashion, 
where instead of specific search criteria a frequency threshold 
is provided. In our setup, the Flow-tools flow-capture daemon 
receives Netflow records from a border gateway and stores 
captured data to a binary log file, switching to a new file once 
in 5 minutes. When a log file for a 5 minute period is complete, 
a cron job (see Fig. 3) converts it to a text file, where for each 
packet there is a line source-IP source-Port destination-IP 
destination-Port IP-protocol. Then LogHound is applied 
several times to this file with different support thresholds and a 
web page is created from its output. Since each detected pattern 
represents a frequent traffic pattern and its support equals to the 
number of packets matching the pattern, network and security 
administrators can get a quick overview of the most prominent 
classes of network traffic for the last 5 minutes, which allows 
them to quickly identify DDoS attacks, worm outbreaks, and 
other intensive anomalous network activity.  

Fig. 3 displays a part of the snapshot from the live system 
for the 1% threshold (for reasons of privacy, IP addresses have 
been replaced with string tags in Fig. 3). Altogether, 1,170,858 
packets were observed within 5 minutes, and LogHound 
detected 50 network traffic patterns. The first group in Fig. 3 
depicts protocol patterns – 1,148,855 TCP packets (IP protocol 
6) were observed, and other commonly used protocols were 
SMTP, HTTP, and HTTPS. The second group of patterns 
reflects the use of company’s e-services by customers over 
HTTP and HTTPS protocols. The third group describes 

employee web browsing through the company’s proxy server – 
the first pattern reflects visits to a financial portal, while the 
next two patterns represent traffic to a popular newspaper 
portal. The last pattern is the most interesting because of its 
unusual nature – individual TCP connections to websites 
normally don’t show up as strong traffic patterns, and website 
is not commonly used by company employees. The closer 
investigation revealed that the pattern corresponds to a 
legitimate download of a large document file. 

IV. FUTURE WORK AND AVAILABILITY 

For a future work, we plan to experiment with various 
anomaly detection methods and combine them with SLCT and 
LogHound, in order to build an event log anomaly detection 
system. SLCT and LogHound are licensed under the terms of 
GNU GPL. Both tools and their online documentation are 
available at http://kodu.neti.ee/~risto. 
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