
Software Manufacturer Liability

LIIS VIHUL

THE LIABILITY OF
SOFTWARE MANUFACTURERS

FOR DEFECTIVE PRODUCTS

Tallinn Paper No. 2.
2014

Previously in This Series

No. 1 Kenneth Geers “Pandemonium: Nation States, National Security, and the
Internet” (2014)

Disclaimer

This publication is a product of the NATO Cooperative Cyber Defence Centre of Excellence (the Centre).
It does not necessarily reflect the policy or the opinion of the Centre or NATO. The Centre may not be held
responsible for any loss or harm arising from the use of information contained in this publication and is not
responsible for the content of the external sources, including external websites referenced in this publication.

Digital or hard copies of this publication may be produced for internal use within NATO and for personal or
educational use when for non-profit and non-commercial purpose, provided that copies bear a full citation.

Please contact publications@ccdcoe.org with any further queries.

mailto:publications@ccdcoe.org

Roles and Responsibilities in Cyberspace

The theme of the 2014 Tallinn Papers is ‘Roles and Responsibilities in Cyberspace’.
Strategic developments in cyber security have often been frustrated by role assignment,
whether in a domestic or international setting. The difficulty extends well beyond the
formal distribution of roles and responsibilities between organisations and agencies.
Ascertaining appropriate roles and responsibilities is also a matter of creating an
architecture that is responsive to the peculiar challenges of cyberspace and that best
effectuates strategies that have been devised to address them.

The 2014 Tallinn Papers address the issue from a variety of perspectives. Some of the
articles tackle broad strategic questions like deliberating on the stance NATO should
adopt in cyberspace matters, or exploring the role small states can play in this domain.
Others touch upon narrower topics, such as the right to privacy in the growingly intrusive
national security context and whether software manufacturers should be compelled to
bear their burden of cyber security by making them liable for faulty software. The thread
running through all the papers, however, is their future-looking approach, one designed
to inspire discussion and undergird strategic development.

Submissions

The Tallinn Papers is a peer reviewed publication of the NATO Cooperative Cyber
Defence Centre of Excellence. Although submissions are primarily commissioned by-
invitation, proposals consistent with the annual theme and dealing with issues of strategic
importance will be considered on an exceptional basis. Since the Tallinn Papers are
meant for a wide audience, such proposals should assume no prior specialised knowledge
on the part of the readership. Authors wishing to submit a proposal may contact the
Editor-in-Chief at publications@ccdcoe.org.

mailto:publications@ccdcoe.org

THE TALLINN PAPERS

1

The Liability of Software Manufacturers
for Defective Products

Liis Vihul1

The most effective and cost-efficient route to cyber security – to making our IT
infrastructure more resilient to hostile cyber operations – is the development of
secure code, for the fewer the vulnerabilities in computer code, the less systems
can be manipulated, be it for monetary gain, espionage or system manipulation
by States. Yet, construing a legal, economic and policy framework to achieve this
objective has eluded the security community for over two decades.

Arguing that design defects in software cannot be entirely avoided, most
computer scientists appear opposed to any standardisation as to how perfect
lines of code they should be required to write. Moreover, software companies
assert that, in light of the unfeasibility of developing absolutely secure code,
they should not be required to assume the risks associated with the exploitation
of vulnerabilities in their products. The companies fairly note that so long as
an incentive to detect and exploit such vulnerabilities exists, successful attacks
against their software are inevitable. Accordingly, licencing agreements tend to
shield developers from most liability with respect to end-users who purchase
their ‘shrink-wrapped’ off-the-shelf products, thereby down-streaming risk.

There are persuasive arguments for the reallocation of risk. The most fervent
advocates of software manufacturer liability have been computer security
experts, who understand that the fundamental cause of cyber insecurity is the
existence of loopholes in hardware and software, the occurrence of which can
be reduced with more careful programming.2 They are joined by end-users who
deem it unfair that they should assume the risk of insecure software. After all,
others developed it, but the users suffer the consequences of insecure code,
which range from inconvenience, such as the recurring need to patch the
products, to severe business loss. In light of their limited bargaining power with
respect to the reallocation of risk, it is only natural that they would look to the
law to mitigate this inequality.

1 Researcher, NATO Cooperative Cyber Defence Centre of Excellence.
2 See, e.g., Bruce Schneier, ‘Information Security and Externalities’ (Schneier on Security, 18

January 2007), available at: https://www.schneier.com/blog/archives/2007/01/information_
sec_1.html.

https://www.schneier.com/blog/archives/2007/01/information_sec_1.html
https://www.schneier.com/blog/archives/2007/01/information_sec_1.html

Software Manufacturer Liability

2

A major obstacle to the reallocation of risk is that civil law seldom imposes
liability when its consequences are unforeseeable and potentially unlimited.3 It
is this very unpredictability that underlies the reluctance of legislators, who in
principle enjoy the authority to oblige software developers to produce better
quality products, to act. The influence of lobbyists promoting the interests
of software developers exacerbates the situation. Moreover, the national and
foreign security policy goals of States are often pursued through cyber means.
Their ability to obtain or alter data, or to manipulate processes, depends on
exploitable target computer systems. Somewhat paradoxically, States therefore
have an interest in both secure and insecure code.

Should reallocation occur as a matter of law, it is likely to do so slowly. Any
opening of the door to manufacturer liability will occur first in situations in
which the number of potential plaintiffs is limited, the scope of the possible
liability clear and predictable and litigation practicable. It will also necessitate
some degree of acceptance of the norms by the manufacturers themselves,
which would seem to fly in the face of software development and sales realities.
Particular care will have to be taken to ensure responsive legislation does not
generate undesirable consequences beyond its intended scope. The fact that
civil liability tends to be rather abstract, applying uniformly to all civil affairs,
will prove especially problematic in this regard. Clearly, the task of developing
an effective legal framework that renders software developers liable for the
damages caused by the exploitation of their products is a complex task.

Civil Liability Generally
There are two categories of civil liability: contractual liability arising out of a
contractual relationship between parties, and tort (or delictual) liability that is
based on wrongful harm that has occurred in a non-contractual relationship. In
the current context, the primary legal relationship between a software company
and an end-user is contractual in nature, as a licencing agreement is a form of
contract. If the end-user suffers harm as a result of a malicious hacker exploiting
a vulnerability in the software, the contractual relationship governs the recovery
of damages from the manufacturer. Any claim for damages from the hacker
would be governed by the law of tort.

Contractual relationships are based on the presumption of freedom of contract

3 The American Law Institute, ‘Restatement of The Law Third, Torts: Liability for Economic
Harm. Tentative Draft No. 1’ (4 April 2012), § 1 comment c.

THE TALLINN PAPERS

3

such that the parties to a contract are generally free to decide upon the terms
and conditions thereof in order to maximise mutual benefit. This presumption,
however, only applies so long as the parties are in an equal negotiating position.
With respect to mainstream software products, users, due to a lack of viable
alternatives, commonly find themselves in a situation in which the only available
option is to purchase the software under the vendor’s standard terms. This
being the case, contract law provides no realistic options to redress the recovery
of consequential damages caused by flawed software because courts are unlikely
to invalidate a one-sided liability-limiting agreement.4 As a result, mainstream
software end-users wishing to utilise certain software applications are typically
caught on the horns of a dilemma: they either have to accept the conditions
set forth in licence agreements drafted by the manufacturers or refrain from
entering into the agreement. By contrast, when large-scale IT procurement
contracts are being negotiated, the extent to which purchasers can insist on
specified conditions, including shared liability for software vulnerabilities,
dramatically increases.5

The law can, of course, substantively limit the freedom of contract vis-à-
vis liability. For example, because a contract for the development of an IT
environment enabling the concealment of the financing of terrorism would
likely violate domestic law prohibitions on such financing, the contract would
be void and therefore unenforceable. However, legal constraints on the right
to freely conclude contracts for the sale of software to end-users are rare; the
majority of them stem from consumer protection legislation.

Consumer protection legislation only extends to end-users who acquire and
use products in their private capacity, outside their business or professional
activities. The most common consumer protection norm is that which disallows
the vendor to impose a standard contractual term restricting or excluding its
liability for bodily injury. Should they exist, such provisions are void. While
domestic consumer protection legislation may extend the prohibition to
provisions designed to exclude the manufacturer’s liability for non-bodily injury
caused intentionally or negligently, it is uncommon.

Contract terms can be ambiguous. In this regard, the American Law Institute has
observed that “[a] contract can allocate a risk without mentioning it explicitly;
silence may itself serve as an allocation if the risk falls within the scope of

4 Michael L. Rustad, Thomas H. Koenig, ‘The Tort of Negligent Enablement of Cybercrime’ 20
Berkeley Technolog y Law Journal 1558-9 (2005).

5 Jeremy Newton, ‘System Supply Contracts’ in Chris Reed (ed.), Computer Law (7th ed, 2011) 4.

Software Manufacturer Liability

4

activity the contract governs.”6 Importantly, should harm occur outside a licence
agreement’s coverage, plaintiffs can seek recovery for that harm through tort
law. For example, if a licencing agreement does not exclude the developer’s
liability for a particular harm or any harm altogether, the user is entitled to
recourse through tort law. Despite the existence of a contractual relationship in
this case, recovery through tort law remains available because the court would
protect the initial bargain the parties had reached, and not because it would
penalise the defendant for failure to reach a broader one.7

The licence agreements of major software companies, however, are explicit as to
their conditions of liability. For example, the licence terms for Microsoft Office
2010 desktop application software only allow recovery for direct damages up
to the amount paid for the software.8 Nevertheless, not all licence agreements
are necessarily as broad regarding the terms of liability. Adobe accepts liability
for gross negligence or intentional misconduct of the company or its employees
in its terms for licensure.9 Despite the fact that Adobe’s general terms of use
accept liability in these particular circumstances, they are still as precise and
clear as Microsoft’s, thereby reducing the potential for uncertainty or dissension
regarding the scope of liability.

In common law legal systems,10 the basis for non-contractual liability is the tort
of negligence. To establish liability, the defendant has to breach a duty of care,
as a result of which the plaintiff suffers harm. Additionally, the risk of harm has
to have been reasonably foreseeable to the defendant. In civil law legal systems,11
by contrast, no individual negligence tort exists; instead, negligence is a form of
fault or culpability. Civil law torts accordingly generally consist of three elements
similar to those of a criminal offence: the objective event, which encompasses
the action of the tortfeasor, the harm, and the causal link; the unlawfulness of

6 Supra note 3, § 3 comment c.
7 Ibid.
8 Microsoft Corporation, ‘Microsoft Software License Terms. Microsoft Office 2010 Desktop

Application Software’ pt. 26, available at: http://www.microsoft.com/en-us/download/
details.aspx?id=13653.

9 Adobe General Terms of Use (16.10.2012), pt. 14.1, available at: http://www.adobe.com/misc/
terms.html.

10 Common law is “[t]he body of law based on the English legal system, as distinct from a civil-
law system.” It is derived from judicial decisions, rather than from statutes or constitutions.
– Black's Law Dictionary, ‘common law’ (9th ed. 2009).

11 Civil law or Roman law is “[o]ne of the two prominent legal systems in the Western world,
originally administered in the Roman Empire and still influential in continental Europe, Latin
America, Scotland, and Louisiana, among other parts of the world.” Black's Law Dictionary,
‘civil law’ (9th ed. 2009).

http://www.microsoft.com/en-us/download/details.aspx?id=13653
http://www.microsoft.com/en-us/download/details.aspx?id=13653
http://www.adobe.com/misc/terms.html
http://www.adobe.com/misc/terms.html

THE TALLINN PAPERS

5

the objective event; and fault. Not every objective event that results in harm is
unlawful and even if harm results, liability will not attach if the actor was not at
fault, i.e. acting intentionally or negligently.

Duty of Care in Software Manufacturing
In the common law context, “[a] person acts negligently if the person does not
exercise reasonable care under all the circumstances.”12 In other words, negligence
is assessed against a reasonableness standard; failure to take reasonable care in a
particular circumstance qualifies as negligence. Factors to be taken into account
in ascertaining whether negligence has occurred are the foreseeable likelihood
that the person’s conduct will result in harm, the foreseeable severity of any
harm that may ensue, and the burden of precautions to eliminate or reduce the
risk of harm.13

Under English common law, the traditional formulation of a duty of care dates
back to a landmark 1932 case in which Lord Atkin seminally stated that “The
liability for negligence […] is no doubt based upon a general public sentiment of
moral wrongdoing for which the offender must pay. […] The rule that you are to
love your neighbour becomes in law, you must not injure your neighbour […]. You
must take reasonable care to avoid acts or omissions which you can reasonably
foresee would be likely to injure your neighbour.”14 Today, reasonable care is
defined as conduct that shows ‘ordinary care’, avoids creating an ‘unreasonable
risk of harm’ and demonstrates ‘reasonable prudence’.15

Of course, the level of care that is considered reasonable depends on the context
in which it operates, and may vary from fairly loose requirements to very strict
ones. Examples of the latter include activities that encompass a high level of
risk of injury by nature, such as those involved in the medical profession or the
infant food industry. Accordingly, “[i]n software law, as in any other area of tort
law, the greater the risk, the greater the duty of care. […] A software vendor that
markets tailored software to a hospital or to a financial institution, for example,
would have a higher duty of care to produce secure software than a vendor

12 Restatement (Third) of Torts: Physical and Emotional Harm (2010), § 3 (United States).
13 Ibid.
14 Donoghue v Stevenson, [1932] All ER Rep 1; [1932] AC 562 (HL) 580. Lord Atkin went on to state

“Who, then, in law is my neighbour? The answer seems to be - persons who are so closely and
directly affected by my act that I ought reasonably to have them in contemplation as being so
affected when I am directing my mind to the acts or omissions which are called in question.”

15 Supra note 12, § 3 comment a.

Software Manufacturer Liability

6

marketing to the home entertainment market.”16

The duty of reasonable care that applies to a particular activity may be set forth
in the law itself. In such cases, ascertaining a breach of the duty simply requires
that the conduct be assessed against the threshold set forth in the legislation.
Should there be no clearly articulated standard binding upon the actor, conduct
has to be evaluated at the abstract level, that is the expected conduct of an
average reasonable person in the same or similar circumstances. This standard
applies to both natural and legal persons. Non-binding instruments such as
guidelines, recommendations, instructions, codes of best practice, and the like
are helpful in this regard.17

The software industry lacks binding formulations of the due diligence that
manufacturers are obliged to exercise. Therefore, to determine the precautionary
and due diligence measures which all companies are reasonably expected to
follow to ensure the security of their products would necessitate an examination
of industry practices. Departure from industry custom by a manufacturer could
indicate negligence.

It is clear that secure software that is less susceptible to malicious exploitation also
best serves the interests of manufacturers, who therefore invest in the security
of their products on their own initiative. Brands or products that are perceived
to be more secure than those of their competitors, as was the case with Apple
operating systems relative to Windows, naturally enjoy a market advantage.
Products that cause user inconvenience or present security risks are liable to
poor publicity, which in turn reflects in poor sales. However, software vendors
cease to voluntarily invest in security once doing so no longer makes sense from
a business perspective; Schneider observed that “[i]f we expect software vendors
to reduce features, lengthen development cycles and invest in secure software
development processes, it needs to be in their financial best interests to do so.”18
Unsurprisingly, the economic incentives that motivate manufacturers diminish
once the cost of their efforts to ensure security exceeds the risk undiscovered
vulnerabilities may present.

Considering the lack of a legislative reasonable care standard, courts will have

16 Michael L. Rustad, Thomas H. Koenig, supra note 4, p. 1571.
17 Liis Vihul et. al., ‘Legal Implications of Countering Botnets – Joint report from the NATO

Cooperative Cyber Defence Centre of Excellence and the European Network and Information
Security Agency (ENISA)’ (2012), p. 62.

18 Bruce Schneier, Information Security: How Liable Should Vendors Be? (Schneier on Security, 28
October 2004), available at: https://www.schneier.com/essay-073.html.

https://www.schneier.com/essay-073.html

THE TALLINN PAPERS

7

to establish the due diligence standard in software development when presented
with a negligence claim against a manufacturer. Rather than adopting a standard
at the level of industry practice, the courts may assess reasonable care at a higher
level and a manufacturer may be found negligent even if able to demonstrate
that the efforts it takes to minimise design flaws are comparable to those of
other developers.

The assertion that industry custom is representative of reasonable care was
famously renounced in the 1932 US case The T.J. Hooper wherein the court did
not excuse the defendant company for not having radio receiving sets on-board
its tugboats. Had it had such equipment, the defendant would have been in a
position to hear the forecast predicting a worsening of the weather, and thereby
prevent barges carrying cargo from sinking. Even though equipping carriers with
radio receivers did not form general industry custom at that time, Judge Learned
Hand held that “in most cases reasonable prudence is in fact common prudence;
but strictly it is never its measure; a whole calling may have unduly lagged in the
adoption of new and available devices. It never may set its own tests, however
persuasive be its usages. Courts must in the end say what is required; there are
precautions so imperative that even their universal disregard will not excuse
their omission.”19 Applying the same principle, software developers should not
assume that compliance with prevalent industry practices intended to assure the
security of software products will suffice to satisfy the reasonable care standard.

It can be anticipated that in determining the appropriate and reasonable
precautions that are required of software developers, courts will take note of
documents such as the 2011 CWE/SANS Top 25 Most Dangerous Software
Errors, a catalogue developed jointly by software security experts and
corporations detailing twenty-five common yet highly dangerous vulnerabilities
in software.20 “[These errors] are often easy to find, and easy to exploit. They
are dangerous because they will frequently allow attackers to completely take
over the software, steal data, or prevent the software from working at all. The
Top 25 list is a tool for education and awareness to help programmers to prevent
the kinds of vulnerabilities that plague the software industry, by identifying
and avoiding all-too-common mistakes that occur before software is even
shipped.”21 It would seem fair to presume that a court would conclude that each
software manufacturer should reasonably be expected to take measures to avoid

19 Re Eastern Transportation Co. (The T.J. Hooper), (1932) 60 F.2d 737, 740 (2d Cir.).
20 ‘CWE/SANS Top 25 Most Dangerous Software Errors’ (2011), available at: http://cwe.mitre.

org/top25/#Guidance.
21 Ibid.

http://cwe.mitre.org/top25/#Guidance
http://cwe.mitre.org/top25/#Guidance

Software Manufacturer Liability

8

the most common and known programming defects in the products it releases.

At whatever level courts eventually recognise the duty of care, if at all,
the challenge which plaintiffs can expect to face is that often it will be very
difficult to prove causation, i.e. that their injury was suffered as a result of the
manufacturer’s breach of the requisite duty of care. To meet this challenge, a
plaintiff will first need to be sufficiently technologically savvy to be confident
that his or her own actions did not cause or contribute to the harm that ensued.
Vulnerabilities in software in and of themselves usually do not generate harm
and go unnoticed unless they are so significant that they render the application
dysfunctional and unfit for purpose. In the latter case, the law of warranty
should adequately handle the issue. By contrast, vulnerabilities in the code
become problematic once a malicious third party exploits them. Such cases will
demand significant effort on the end-user’s part to determine the root cause of
the problem. To overcome this evidentiary obstacle, advocacy for strict liability
tends to emerge. Under the strict liability doctrine, which is a non-fault based
liability regime, liability is imposed on the tortfeasor irrespective of whether the
plaintiff has acted negligently.

Strict Liability
The domain of strict liability is generally reserved for inherently abnormally
dangerous activities or ultrahazardous activities. These include the production
or handling of explosives and radioactive materials, blasting and keeping wild or
dangerous animals. If a person suffers injury as a result of these activities, liability
attaches to the defendant regardless of whether reasonable care was exercised or
even exceeded, involving all feasible precautions. Considering the limited set of
circumstances that the strict liability regime governs its extension to software
manufacturers is unlikely even if certain public policy considerations support it.
In fact, legislators have refused to extend strict liability to donor blood, vaccine,
asbestos and fast food providers, despite the potentially dramatic consequences
associated with their handling or use. This is because the socially desirable
benefits these products provide appear to outweigh their potential negative
effects.22 Moreover, the extra-legal arguments for imposing a negligence-based
liability on software manufacturers, such as the potentially industry-chilling
effect of indeterminate financial liability, apply in the case of strict liability.
Indeed, the fact that the onerous strict liability does not excuse the defendant

22 Seldon J. Childers, Don't Stop the Music: No Strict Products Liability for Embedded Software,
19 University of Florida Journal of Law and Public Policy 166 (2008).

THE TALLINN PAPERS

9

even if the latter had taken all necessary precautions exacerbates those effects.

Whether software is regarded as a product or as a service has critical legal
consequences. It has long been a contentious issue, challenging legal scholars
and practitioners alike, and disparate approaches have been taken in different
jurisdictions. Nevertheless, some cases seem clear. For instance, a program sold
on a physical medium and equally available to all interested buyers is generally
characterised as a product. Cloud applications, by contrast, are usually considered
to be a service, as often denoted by the term ‘software as a service’. Similarly,
software that is designed on specification for a particular customer to meet
unique requirements tends towards characterisation as a service. When software
is qualified as a service the possibility of liability for professional malpractice
surfaces. This doctrine is again centred on the exercise of due care; liability
arises if the programmer has acted negligently, as assessed against reasonable
conduct by similarly situated professionals.

When software is considered to be a product, product liability law can attach.
Product liability forms a part of tort law, but the specifics and preconditions of
its application vary by jurisdiction. Complicating matters is the fact that product
liability does not clearly fall under either the traditional negligence-based tort
regime or that of strict liability. In the United States, the strict liability approach
to products, which began in the1940s, started to be opposed by manufacturers
and insurers who faced a “growing tide of products liability litigation.”23 Today,
US product liability practice is in flux. It now reflects elements of negligence-
based liability and, in general, “seems to be narrowing rather than extending
the liability of manufacturers.”24 This approach accords with European Union
legislation, under which product liability is a hybrid of negligence-based and
strict liability.25 By this doctrine, the burden of proof is reversed, and it is for
the manufacturer, i.e. the defendant, to demonstrate that the defects in product,
in this case the software bugs, were unavoidable, even if due care had been
exercised. According to Art. 7(e) of the EU product liability directive, an
argument in support of the latter claim could be that the state of scientific and

23 Ibid., p. 132.
24 Ibid.
25 Council Directive 85/374/EEC of 25 July 1985 on the approximation of the laws, regulations

and administrative provisions of the Member States concerning liability for defective
products. Official Journal L 210, 7 August 1985 pp. 29-33. Amended by Directive 1999/34/EC
of the European Parliament and of the Council of 10 May 1999 amending Council Directive
85/374/EEC on the approximation of the laws, regulations and administrative provisions of
the Member States concerning liability for defective products. Official Journal L 141, 4 June
1999 pp. 20-1.

Software Manufacturer Liability

10

technical knowledge at the time when the product was put into circulation did
not allow for discovery of the defect.26 In litigation, this could be a weighty
assertion for manufacturers in that specific techniques that exploit a particular
vulnerability may be developed only after the software program has been
introduced in the market.

Economic Damage as a Basis for Liability
The most problematic aspect of trying to solve the cyber security challenge by
subjecting software manufacturers to delictual liability is that neither common
nor civil law tends to regard economic damage alone as a sufficient basis for
liability. In other words, actors ordinarily bear a duty of care only if their
conduct risks physical harm. However, economic damage is the primary type
of harm faulty software causes. Examples include the cost of contracting IT
professionals to restore the functionality and integrity of a computer or computer
network which has been infected due to vulnerabilities in a software application,
the financial harm caused by the unauthorised disclosure of sensitive data and
the cost of replacing the faulty software programs and licencing alternative
applications that are perceived to be more secure.

The law of tort, on the other hand, has traditionally been concerned with
actions that result the physical impairment of the human body (‘bodily harm’)
or of property (‘property damage’). Bodily harm includes physical injury, illness,
disease, impairment of bodily function and death.27 Bodily harm and property
damage as a consequence of cyber operations generally belong to the domain
of national security where we can expect actors to possess enhanced cyber
capabilities to produce such effects. In this context, however, actions will likely
not be followed up by civil lawsuits.

There are two primary reasons for excluding the recovery of purely economic
loss from tort law. First, economic loss usually occurs in a non-self-limiting
fashion, whereas physical injury is usually restricted in terms of time and scope.
For example, while a careless driver threatens harm only to those nearby,28
defective software can cause pecuniary harm to all its users, of whom there
may be millions. Due to the fact that economic losses tend to proliferate in this
way, defendants would be subjected to indeterminate liability out of proportion

26 EU Member States could choose whether to opt in to this clause when transposing the
directive into national legislation, and most did so.

27 Supra note 12, § 4.
28 Supra note 3, § 1 comment c.

THE TALLINN PAPERS

11

to their culpability. This prospect would, in turn, generate an exaggerated
pressure to limit or avoid the production and release of new software programs
altogether, thereby stifling innovation.29

Second, risk of economic loss is in principle well suited to allocation by
contract. Such risk is therefore generally allocated by contract; recovery occurs
through the application of contract law.30 Parties to a contract enter into it
voluntarily, and are therefore in a position to weigh the risks that are involved,
and consequently manage them appropriately. The most common means of
managing risk is through the purchase of insurance. Indeed, since a contractual
relationship between the manufacturer and each licensee already exists, it would
be a suitable tool for fostering the regulation of software manufacturer liability,
should policy determine that software companies excessively and unfairly limit
their liability towards end-users. If so, the issue could be addressed by limiting
the manufacturers’ right to freedom of contract and requiring them to assume
greater responsibility for their software.

Amending legislation to encompass solely economic losses in order to
hold software manufacturers liable lacks perspective, as it would require a
fundamental reform in tort law, the effects of which would reach far beyond the
software industry. However, even if such an approach were pursued, it would
not provide a strategic solution to the cyber security conundrum, for every end-
user would have to demonstrate economic loss. If the economic damage consists
of the procurement of professional IT services to reinstall applications, having
the computer’s operating system reinstalled or purchasing an alternative licence
for a different program, it is likely to be too small, and the associated costs of
legal proceedings too high, to encourage the victims to undertake recourse to
court against the manufacturer.

Insurance is another problematic aspect which bears on the potential liability
of software manufacturers. To be a viable solution, especially in a strict liability
legal regime, the risks for which commercial enterprises are held responsible
must be insurable.31 Commentators have opined that the prospect of insurance
for software developers is unlikely in light of the extent of the potential liability.
Furthermore, the unpredictability of their possible liability makes it impossible
to actuarially calculate its cost, which could result in inappropriately expensive

29 Ibid.
30 Ibid.
31 James A. Henderson, Jr., Why Negligence Dominates Tort, 50 UCLA Law Review 390 (2002).

Software Manufacturer Liability

12

liability insurance.32 The approach would also negatively affect access to a variety
of applications at a fairly low price that users have hitherto enjoyed, since the
cost of insurance would reflect in the product price. Users may be unprepared
to assume such cost in exchange for a degree of extra security, especially since
the potential risks they are facing from insecure software are predominantly
monetary and fairly limited in scope.

Inducing Software Developers to Write More Secure Code
Governments are understandably concerned with the highly problematic and
worrisome consequences of cyber crime and the threat cyber attacks pose to
national security, the root causes of which are to a great extent exploitable
software applications. Yet, hoping to mitigate these risks through the imposition
of software manufacturer liability enforced by end-users would demonstrate a
lack of strategic foresight.

First, delictual liability normally does not support the recovery of pure economic
damage, the type that end-users are most likely to suffer. This is the most
significant formal roadblock shielding manufacturers from liability. Second, it
would be highly complex for either legislatures or courts to articulate the duty
of care that applies to software manufacturers because different applications
create different expectations of duty of care. For example, the reasonable care
that should be exercised when programming a word processing tool is logically
less than that for a SCADA system operating critical infrastructure or software
that is employed in medical devices. However, if the assumption is that all
coding errors should be regarded as equally dangerous because for attackers any
vulnerability will suffice to, for example, acquire access into a sensitive system,
the price of a less critical program like a word processing tool would rocket
due to the extensive precautions that would have to be taken to assure security.
End-users would resultantly shoulder a disproportionate share of cyber security
transactional costs. Third, even if the material law in theory successfully enabled
software manufacturers to be held liable, end-users might not be motivated
to exploit this possibility because potential recovery would not outweigh the
financial, emotional and temporal burden of judicial proceedings.

With regard to the latter observation, the consequences of an articulated
duty of care could prove contradictory, depending on how probable software
manufacturers would consider that successful lawsuits were brought against

32 See, e.g., Childers, supra note 22, pp. 137, 139, 173.

THE TALLINN PAPERS

13

them. If they viewed this likelihood to be high, the possibility of litigation would
create a deterrent effect towards the careless flaws in software code. Yet, the
recognition’s effects would not be limited to those desirable. It can be anticipated
that the prospect of liability would decelerate innovation and in the broader scale
reduce employment opportunities and tax revenue, as well as increase the price
of software applications. Today, inexpensive software has qualitatively improved
societal well-being – health, social engagement, employment, increase in safety,
decrease in work load, etc.,33 and exposure to liability could negatively impact all
of these aspects of daily life. By contrast, if manufacturers regarded successful
proceedings to be unrealistic, it would not motivate them to invest more in the
security of their products.

Assuming for the sake of argument that software companies are not putting a
reasonable emphasis on securing their products, the focus should shift from
insisting on the civil liability of software manufacturers. A more promising
approach is to create incentives to write better code by requiring certain
activities and procedures during software development. In fact, various efforts
to structure and formalise software development in order to enhance security
are already underway, a prime example being the Secure Software Development
Life Cycle.34 Additionally, software products could be required to undergo
obligatory penetration testing by a certified penetration testing company prior
to their release to the market.

It is incontrovertible that most companies test their products on their own
initiative, since it is in their business interest that the programs are fully
functional and secure. However, such testing probably only goes so far –
once the costs exceed the financial risks, it no longer makes sense to pursue
additional precautionary measures. Indeed, today it makes more financial sense
for a manufacturer to shorten the production cycles and release new innovative
products quickly, and distribute patches once vulnerabilities are discovered.
This propensity to rely on patching rather than investing more in the pre-release
phase so that obviously insecure products never reach the market is a root cause
of cyber insecurity. There is no guarantee that end-users will diligently install
each patch as soon as it is provided by the manufacturer, resulting in vulnerable
applications and devices constantly being connected to the internet, and thereby
susceptible to exploitation.

33 Ibid., p. 165.
34 Introduction to Secure Software Development Life Cycle, available at: http://resources.

infosecinstitute.com/intro-secure-software-development-life-cycle.

http://resources.infosecinstitute.com/intro-secure-software-development-life-cycle
http://resources.infosecinstitute.com/intro-secure-software-development-life-cycle

Software Manufacturer Liability

14

By contrast, if penetration testing was a legal requirement, and an end-user
suffered harm as a result of the manufacturer’s failure to comply with the norm,
the manufacturer would be liable for the resulting loss. Of course, any such
approach must be informed by technological and economic reality, and therefore
requires careful consideration prior to adoption. But setting specific obligations
out in legislation, as opposed to basing them only on industry initiative and thus
leaving compliance subject only to industry scrutiny, would also open the door
to administrative oversight by the State, and allow for appropriate sanctions
in the case of noncompliance. The State, as opposed to individual end-users,
is a much more powerful and effective guarantor of national cyber security
than end-users, who are primarily concerned with the functionality of software
programs in support of their everyday activities.

Cyber security can only be achieved through a multi-stakeholder approach, in
which each participant in today’s interconnected social construct bears a degree
of responsibility. No single player in this system can be expected to carry the full
burden of cyber security, or the full blame for cyber insecurity. Responsibility for
enhancing the security of software must be shared between manufacturers, who
release it into the market; legislators, who are in a position to impose security
requirements on the manufacturers; end-users, who must keep the software
applications they use up-to-date and patched; and finally also the education
system, which has to support awareness among end-users.

